Skip to main content

Included in the following conference series:

  • 4387 Accesses

Abstract

This paper presents a novel constitutive model for modeling creep behaviour of granular materials. The model consists of a frictional part and a viscous part representing the frictional and the viscous stresses in granular media, respectively. The frictional part is a simple critical state hypoplastic constitutive model, while the viscous part is a rheological model. The proposed model is validated by simulating some element tests on granular soils. The new model can describe the three creep stages, namely primary, secondary, and tertiary creep, in a unified way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burland, J.B., Burbridge, M.C.: Settlement of foundations on sand and gravel. In: Institution of Civil Engineers, Proceedings, Part 1, vol. 78, pp. 1325–1381 (1985)

    Article  Google Scholar 

  2. Chen, H., Lee, C.F.: Runout analysis of slurry flows with Bingham model. J. Geotechn. Geoenviron. Eng. 128(12), 1032–1042 (2002)

    Article  Google Scholar 

  3. Di Prisco, C., Imposimato, S.: Time dependent mechanical behaviour of loose sands. Mech. Cohesive-frictional Mater. 1(1), 45–73 (1996)

    Article  Google Scholar 

  4. Gajo, A., Piffer, L., De Polo, F.: Analysis of certain factors affecting the unstable behaviour of saturated loose sand. Mech. Cohesive-frictional Mater. 5(3), 215–237 (2000)

    Article  Google Scholar 

  5. Ghiabi, H., Selvadurai, A.P.: Time-dependent mechanical behaviour of a granular medium used in laboratory investigations. Int. J. Geomech. 9(1), 1–8 (2009)

    Article  Google Scholar 

  6. Goldstein, M., Ter-Stepanian, G.: The long-term strength of clays and depth creep of slopes. In: Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, London, vol. 2, pp. 311–314 (1957)

    Google Scholar 

  7. Karimpour, H., Lade, P.V.: Time effects relate to crushing in sand. J. Geotech. Geoenviron. Eng. 136(9), 1209–1219 (2010)

    Article  Google Scholar 

  8. Karstunen, M., Yin, Z.Y.: Modelling time-dependent behaviour of Murro test embankment. Géotechnique 60(10), 735–749 (2010)

    Article  Google Scholar 

  9. Kuwano, R., Jardine, R.J.: On measuring creep behaviour in granular materials through triaxial testing. Can. Geotech. J. 39(5), 1061–1074 (2002)

    Article  Google Scholar 

  10. Lade, P.V., Liu, C.T.: Experimental study of drained creep behaviour of sand. J. Eng. Mech. 124(8), 912–920 (1998)

    Article  Google Scholar 

  11. Matsushita, M.: Time effects on the prepeak deformation properties of sands. In: Proceedings of Second International conference on Pre-Failure Deformation Characteristics of Geomaterials, IS Torino 1999, vol. 1, pp. 681–689. Balkema (1999)

    Google Scholar 

  12. Mesri, G., Choi, Y.K.: Settlement analysis of embankments on soft clays. J. Geotech. Eng. 111(4), 441–464 (1985)

    Article  Google Scholar 

  13. Mitchell, J.K., Soga, K.: Fundamentals of Soil Behaviour. John Wiley & Sons, Hoboken (2005)

    Google Scholar 

  14. Peng, C., Wu, W., Yu, H.S., Wang, C.: A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech. 10(6), 703–717 (2015)

    Article  Google Scholar 

  15. Sing, A., Mitchell, J.K.: General stress–strain-time functions for soils. J. Soil Mech. Found. Division ASCE 94(1), 21–46 (1968)

    Google Scholar 

  16. Wang, Y.H., Lau, Y.M., Gao, Y.: Examining the mechanisms of sand creep using DEM simulations. Granul. Matter 16(5), 733–750 (2014)

    Article  Google Scholar 

  17. Wang, X.T., Wu, W.: An updated hypoplastic constitutive model, its implementation and application. InL Bifurcations, Instabilities and Degradations in Geomaterials, pp. 133–143. Springer (2011)

    Google Scholar 

  18. Wu, W.: On high-order hypoplastic models for granular materials. J. Eng. Math. 56(1), 23–34 (2006)

    Article  Google Scholar 

  19. Xu, G.F., Wu, W., Qi, J.L.: Modeling the viscous behaviour of frozen soil with hypoplasticity. Int. J. Numer. Anal. Meth. Geomech. 40(15), 2061–2075 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research carried out in this paper is partly funded by the project “GEORAMP” within the RISE programme of Horizon 2020 under grant number 645665.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Wu, W., Yin, Z. (2018). Creep Modelling of Granular Material. In: Zhou, A., Tao, J., Gu, X., Hu, L. (eds) Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. GSIC 2018. Springer, Singapore. https://doi.org/10.1007/978-981-13-0125-4_30

Download citation

Publish with us

Policies and ethics