Investigation on the Thermal Conductivity of Shanghai Soft Clay

  • Bao Chen
  • Yiyi Huang
  • Weimin Ye
  • Yujun Cui
  • Zou Xu
Conference paper


Investigation on thermal properties of Shanghai soft clay is of great importance for the design of subway fire safety in Shanghai. Using the heat probe method, thermal conductivity tests were conducted on the remolded specimens of the silty clays from the ④ and ⑤−1 layers in Shanghai. Results show that the thermal conductivity of saturated Shanghai soft soil decreases with the increase of void ratio. For given void ratios, the thermal conductivity of saturated Shanghai soft clay increases with increasing temperature, while the increasing rate depends on the temperature. For constant void ratio, with increasing water content, the thermal conductivity of Shanghai clay increases first and then turns to decrease with a maximum value appearing close to the water content corresponding to the plasticity limit of the soil tested. This observation may be due to the shrinkage of the specimen, which induces the decrease of the void ratio resulting in closer contact of soil particles.


Tunnel fire safety Thermal conductivity Silt clay Heat probe method 



This study was financially supported by the National Science Foundation of China (41372270) and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Cockram, I.J., Birnie, G.R.: The ventilation of London’s underground railways. In: Proceedings of the 2nd International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels (1976)Google Scholar
  2. 2.
    Yan, Z.G., Zhu, H.H.: Experimental study on mechanical behaviors of tunnel lining under and after fire scenarios. In: Proceedings of the 33rd ITA-AITES World Tunnel Congress, Prague, pp. 1805–1809 (2007)Google Scholar
  3. 3.
    Savov, K., Lackner, R., Mang, H.A.: Stability assessment of shallow tunnels subjected to fire load. Fire Saf. J. 40(8), 745–763 (2005)CrossRefGoogle Scholar
  4. 4.
    Tanaka, N., Thomas, J., Crillly, G.: Stress-strain behavior of reconstituted illicit clay at different temperatures. Eng. Geol. 47, 339–350 (1997)CrossRefGoogle Scholar
  5. 5.
    Tang, A.M., Cui, Y.J., Le, T.T.: A study on the thermal conductivity of compacted bentonites. Appl. Clay Sci. 41, 181–189 (2008)CrossRefGoogle Scholar
  6. 6.
    Ampofo, F., Maidment, G., Missenden, J.: Underground railway environment in the UK part 1: review of thermal comfort. Appl. Therm. Eng. 24, 611–631 (2004)CrossRefGoogle Scholar
  7. 7.
    Ampofo, F., Maidment, G., Missenden, J.: Underground railway environment in the UK part 2: investigation of heat load. Appl. Therm. Eng. 24, 633–645 (2004)CrossRefGoogle Scholar
  8. 8.
    Abu-Hamdeh, N.H., Reeder, R.C.: Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Am. J. 64, 1285–1290 (2000)CrossRefGoogle Scholar
  9. 9.
    Noborio, K., McInnes, K.J.: Thermal conductivity of salt-affected soils. Soil Sci. Soc. Am. J. 57, 329–334 (1993)CrossRefGoogle Scholar
  10. 10.
    Deng, Y.S., He, P., Zhou, C.L.: An experimental research on the thermal conductivity coefficient of saline soil. J. Glaciol. Geocryology 26(3), 319–323 (2004)Google Scholar
  11. 11.
    Hiraiwa, Y., Kasubuchi, T.: Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75 °C). Eur. J. Soil Sci. 51, 211–218 (2000)CrossRefGoogle Scholar
  12. 12.
    Nusier, O.K., Abu-Hamdeh, N.H.: Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf. 39(2), 119–123 (2003)CrossRefGoogle Scholar
  13. 13.
    De Vries, D.A.: Thermal properties of soil. In: van Wijk, W.R. (ed.) Physics of Plant Environment, North-Holland, Amsterdam, pp. 210–235 (1963)Google Scholar
  14. 14.
    Tarnawski, V.R., Leong, W.H.: Thermal conductivity of soils at very low moisture content and moderate temperatures. Transp. Porous Media 41(2), 137–147 (2000)CrossRefGoogle Scholar
  15. 15.
    Cosenza, P., Guérin, R., Tabbagh, A.: Relationship between thermal conductivity and water content of soils using numerical modeling. Eur. J. Soil Sci. 54, 581–587 (2003)CrossRefGoogle Scholar
  16. 16.
    Abu-Hamdeh, N.H.: Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes. J. Agric. Eng. Res. 80(2), 209–216 (2001)CrossRefGoogle Scholar
  17. 17.
    Abu-Hamdeh, N.H.: Thermal properties of soils as affected by density and water content. Biosys. Eng. 86(1), 97–102 (2003)CrossRefGoogle Scholar
  18. 18.
    Lu, S., Ren, T.S., Gong, Y.S.: An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Physics 71(1), 8–14 (2007). (in Chinese)Google Scholar
  19. 19.
    Chen, S.X., Chen, S.Y.: Experimental study on thermal conductivity of sands. Chin. J. Geotech. Eng. 16(5), 47–53 (1994). (in Chinese)Google Scholar
  20. 20.
    Su, T.M., Liu, T., Li, X.Z.: Test and analysis of thermal properties of soil in Nanjing district. Chin. J. Rock Mech. Eng. 25(16), 1278–1283 (2006). (in Chinese)Google Scholar
  21. 21.
    Xiao, L., Li, X.Z., Zhao, X.B.: Laboratory on influences of moisture content and porosity on thermal conductivity of soils. J. PLA Univ. Sci. Technol. (Nat. Sci. Ed.) 9(3), 241–247 (2008). (in Chinese)Google Scholar
  22. 22.
    Campbell, G.S., Jungbauer, J.D., Bidlake, W.R., Hungerford, R.D.: Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 158(5), 307–313 (1994)CrossRefGoogle Scholar
  23. 23.
    Liu, C.H., Zhou, D., Wu, H.: Measurement and prediction of temperature effect of thermal conductivity of soils. Chin. J. Geotech. Eng. 33(12), 1877–1886 (2011). (in Chinese)Google Scholar
  24. 24.
    Zhang, Y.J., Yu, Z.W., Huang, R., Wu, G., Hu, J.H.: Measurement of thermal conductivity and temperature effect of geotechnical materials. Chin. J. Geotech. Eng. 31(2), 213–217 (2009). (in Chinese)Google Scholar
  25. 25.
    Shi, Y.J., Yan, X.X., Wang, J.H., Fang, Z., Li, B.: Evaluation of engineering geological condition in shanghai coastal area. In: New Frontiers in Engineering Geology and the Environment, pp. 141–144 (2013)Google Scholar
  26. 26.
    Shi, Y.J.: Engineering geological conditions and major geological problems during construction of metro tunnels in Shanghai area. J. Eng. Geol. 18(5), 774–780 (2010)Google Scholar
  27. 27.
    ASTM D 5334–08: Standard test methods for determining of thermal conductivity of soil and soft rock by thermal needle probe procedure. Vol. 04.08, ASTM, 100 Barr - Harbor Dr., West Conshocken, PA 19428–2059 (2008)Google Scholar
  28. 28.
    Gori, F., Corasaniti, S.: Theoretical prediction of the soil thermal conductivity at moderately high temperatures. J. Heat Transf. 124, 1000–1008 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bao Chen
    • 1
  • Yiyi Huang
    • 1
  • Weimin Ye
    • 1
  • Yujun Cui
    • 1
    • 2
  • Zou Xu
    • 3
  1. 1.Key Laboratory of Geotechnical and Underground Engineering of Ministry of EducationTongji UniversityShanghaiChina
  2. 2.Ecole des Ponts ParisTech, UR Navier/CERMESMarne-la-ValléeFrance
  3. 3.Shanghai Geotechnical Investigations and Design Institute Co., Ltd.ShanghaiChina

Personalised recommendations