Effects of Normal Stress and Clay Content on the Frictional Properties of Reservoir Rocks Under Fully Saturated Conditions

  • Mengke An
  • Fengshou Zhang
  • Lianyang Zhang
  • Yi Fang
Conference paper


The large magnitude micro-seismicity observed during the process of hydraulic fracturing is likely to be associated with the activation of pre-existing faults. To better understand the mechanism of fault stability, shear tests were performed on powdered gouge of shale and sandstone reservoir rocks from four different oilfields in China using the double direct shearing geometry, at three successive normal stresses, 10, 20 and 40 MPa, and under fully saturated conditions, aiming to investigate the effects of normal stress and clay contents on frictional strength and stability of faults. The velocity step tests were performed from 0.1 to 100 μm/s to assess the frictional stability by calculating the value of a − b. It is observed that the frictional strength decreases with higher clay content and a transition from velocity weakening behavior (a – b < 0) to velocity strengthening behavior (a – b > 0) at a clay content of 15–20%. The frictional strength generally decreases slightly with higher normal stress. The critical slip displacement Dc shows an increasing trend with the increase of clay content at both low and high normal stress, while an opposite trend appears under medium normal stress.


Friction Stability of faulting Minerology Stress conditions Reservoir rocks 



This research is supported by the National Natural Science Foundation of China (No. 41672268).


  1. 1.
    Rubinstein, J.L., Mahani, A.B.: Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol. Res. Lett. 86(4), 1060–1067 (2015)CrossRefGoogle Scholar
  2. 2.
    Ellsworth, W.L.: Injection-induced earthquakes. Science 341(6142), 1225942/1–1225942/7 (2013)CrossRefGoogle Scholar
  3. 3.
    Elst, N.J.V.D., Savage, H.M., Keranen, K.M., Abers, G.A.: Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science 341(6142), 164–167 (2013)CrossRefGoogle Scholar
  4. 4.
    Mcgarr, A., Bekins, B., Burkardt, N., Dewey, J., Earle, P., Ellsworth, W., Ge, S., Hickman, S., Holland, A., Majer, E., Rubinstein, J., Sheehan, A.: Coping with earthquakes induced by fluid injection. Science 347(6224), 830–831 (2015)CrossRefGoogle Scholar
  5. 5.
    Bao, X., Eaton, D.W.: Fault activation by hydraulic fracturing in western Canada. Science 354(6318), 1406–1409 (2016)CrossRefGoogle Scholar
  6. 6.
    Vrolijk, P., van der Pluijm, B.A.: Clay gouge. J. Struct. Geol. 21(8), 1039–1048 (1999)CrossRefGoogle Scholar
  7. 7.
    Niemeijer, A.R., Spiers, C.J.: Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics 427(1–4), 231–253 (2006)CrossRefGoogle Scholar
  8. 8.
    Shimamoto, T., Logan, J.M.: Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone. Tectonophysics 75(3–4), 243–255 (1981)CrossRefGoogle Scholar
  9. 9.
    Takahashi, M., Mizoguchi, K., Kitamura, K., Masuda, K.: Effects of clay content on the frictional strength and fluid transport property of faults. J. Geophys. Res. Solid Earth 112(B8), 59–69 (2007)CrossRefGoogle Scholar
  10. 10.
    Crawford, B.R., Faulkner, D.R., Rutter, E.H.: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. J. Geophys. Res. Solid Earth 113(B3), 133–144 (2008)CrossRefGoogle Scholar
  11. 11.
    Tembe, S., Lockner, D.A., Wong, T.: Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: binary and ternary mixtures of quartz, illite, and montmorillonite. J. Geophys. Res. Solid Earth 115(B3), 153–164 (2010)Google Scholar
  12. 12.
    Ikari, M.J., Niemeijer, A.R., Marone, C.: The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J. Geophys. Res. Solid Earth 116(B8), 125–157 (2011)CrossRefGoogle Scholar
  13. 13.
    Tesei, T., Collettini, C., Carpenter, B.M., Viti, C., Marone, C.: Frictional strength and healing behavior of phyllosilicate-rich faults. J. Geophys. Res. Solid Earth 117(B9), B09402/1–B09402/13 (2012)CrossRefGoogle Scholar
  14. 14.
    Mair, K., Marone, C.: Friction of simulated fault gouge for a wide range of velocities and normal stresses. J. Geophys. Res. Solid Earth 104(B12), 28899–28914 (1999)CrossRefGoogle Scholar
  15. 15.
    Saffer, D.M., Frye, K.M., Marone, C., Mair, K.: Laboratory results indicating complex and potentially unstable frictional behavior of smectite clay. Geophys. Res. Lett. 28(12), 2297–2300 (2001)CrossRefGoogle Scholar
  16. 16.
    Saffer, D.M., Marone, C.: Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett. 215(1–2), 219–235 (2003)CrossRefGoogle Scholar
  17. 17.
    Ikari, M.J., Saffer, D.M., Marone, C.: Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. Solid Earth 114(B5), B05409/1–B05409/18 (2009)CrossRefGoogle Scholar
  18. 18.
    Hartog, S.A.M.D., Peach, C.J., Winter, D.A.M.D., Spiers, C.J., Shimamoto, T.: Frictional properties of megathrust fault gouges at low sliding velocities: New data on effects of normal stress and temperature. J. Struct. Geol. 38(5), 156–171 (2012)CrossRefGoogle Scholar
  19. 19.
    Frye, K.M., Marone, C.: Effect of humidity on granular friction at room temperature. J. Geophys. Res. Solid Earth 107(B11), ETG 11-1–ETG 11-13 (2002)CrossRefGoogle Scholar
  20. 20.
    Fang, Y., Hartog, S.A.M.D., Elsworth, D., Marone, C., Cladouhos, T.: Anomalous distribution of microearthquakes in the Newberry Geothermal Reservoir: mechanisms and implications. Geothermics 63, 62–73 (2016)CrossRefGoogle Scholar
  21. 21.
    Dieterich, J.H.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84(B5), 2161–2168 (1979)CrossRefGoogle Scholar
  22. 22.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. Solid Earth 881(B12), 10359–10370 (1983)CrossRefGoogle Scholar
  23. 23.
    Leeman, J.R., Saffer, D.M., Scuderi, M.M., Marone, C.: Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 7, 11104/1–11104/6 (2016)CrossRefGoogle Scholar
  24. 24.
    Carpenter, B.M., Collettini, C., Viti, C., Cavallo, A.: The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature: insights from laboratory experiments and microstructural observations. Geophys. J. Int. 205(1), 548–561 (2016)CrossRefGoogle Scholar
  25. 25.
    Gu, J.C., Rice, J.R., Ruina, A.L., Tse, S.T.: Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32(3), 167–196 (1984)CrossRefGoogle Scholar
  26. 26.
    Kohli, A.H., Zoback, M.D.: Frictional properties of shale reservoir rocks. J. Geophys. Res. Solid Earth 118(9), 5109–5125 (2013)CrossRefGoogle Scholar
  27. 27.
    Marone, C., Kilgore, B.: Scaling of the critical slip distance for seismic faulting with shear strain in fault zones. Nature 362(6421), 618–621 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Geotechnical EngineeringTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Geotechnical and Underground Engineering of Ministry of EducationTongji UniversityShanghaiChina
  3. 3.Department of Civil Engineering and Engineering MechanicsUniversity of ArizonaTucsonUSA
  4. 4.Department of Energy and Mineral Engineering, G3 Center, EMS Energy InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations