Advertisement

Influence of Different Loading Angles with Respect to the Stratification on Tensile Strength of Black Shale

  • Xiao-shan Shi
  • Jing-rui Niu
  • Da-an Liu
  • Tie-wu Tang
  • Bonan Wang
  • Weige Han
Conference paper

Abstract

The investigation on anisotropy of shale in mechanical and psychical characteristics is of great significance to successful implementation of hydraulic fracturing in gas shale exploitation. In this paper, the effect of shale anisotropy on tensile strength was studied via Brazilian splitting tests (BD) at different loading angles (the angle between loading axis and the stratification). The specimens were prepared along different angles (0°, 30°, 45°, 60°, 90°) with respect to the stratification of black shale (BS). The results indicate that the tensile strength for samples with different loading angles exhibits obvious anisotropy. It was noted that complex tensile fractures can be formed under larger loading angels. Studying the tensile strength anisotropy of shale can provide some theoretical guidance for optimization of fracturing scheme and fracture evaluation.

Keywords

Black shale Failure pattern Tensile strength anisotropy Brazilian test Loading angle 

Notes

Acknowledgements

The research reported in this paper was supported by the National Natural Science Foundation of China, study of Rock Fracture under Hydraulic External Force Disturbance (No. 41172270), and supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Research and Development of Test Equipment about Fracture, Seepage and Microseisms (No. XDB10050200) and Science Foundation for Youths (No. 41602330).

References

  1. 1.
    Jaeger, J.C.: Shear failure of anisotropic rock. Geol. Mag. 97(1), 65–72 (1960)CrossRefGoogle Scholar
  2. 2.
    Taliercio, A., Landriani, G.S.: A failure condition for layered rock. Int. J. Rock Mech. Mining Sci. 25(5), 299–305 (1988)CrossRefGoogle Scholar
  3. 3.
    Ramamurthy, T.: Strength, modulus responses of anisotropic rocks. Compressive Rock Eng. 1(1), 313–329 (1993)Google Scholar
  4. 4.
    Tien, Y.M., Kuo, M.C.: A failure criterion for transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 38(3), 399–412 (2001)CrossRefGoogle Scholar
  5. 5.
    Nasseri, M.H.B., Rao, K.S., Ramamurthy, T.: Anisotropic strength and deformational behavior of Himalayan schists. Int. J. Rock Mech. Min. Sci. 40(1), 3–23 (2003)CrossRefGoogle Scholar
  6. 6.
    Lee, Y.K., Pietruszczak, S.: Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. Int. J. Rock Mech. Min. Sci. 45(4), 513–523 (2008)CrossRefGoogle Scholar
  7. 7.
    Wan, Y., et al.: An experimental investigation of diffusivity and porosity anisotropy of a Chinese gas shale. J. Nat. Gas Sci. Eng. 23, 70–79 (2015)CrossRefGoogle Scholar
  8. 8.
    Kuilaa, U., Ewhurstb, D.N., Igginsb, A.F.: Stress anisotropy and velocity anisotropy in low porosity shale. Tectonophysics 503(1–2), 34–44 (2011)CrossRefGoogle Scholar
  9. 9.
    Niandou, H., Shao, J.F., Henry, J.P.: Laboratory investigation of the mechanical behaviour of Tournemire shale. Int. J. Rock Mech. Min. Sci. 34(1), 3–16 (1997)CrossRefGoogle Scholar
  10. 10.
    Sondergeld, C.H., et al.: Microstructural studies of gas shales. In: SPE Unconventional Gas Conference. Society of Petroleum Engineers, Pittsburgh (2010)Google Scholar
  11. 11.
    Sondergeld, C.H., Rai, C.S.: Elastic anisotropy of shales. Lead. Edge 30, 324–331 (2011)CrossRefGoogle Scholar
  12. 12.
    Sondergeld, C.H., et al.: Ultrasonic measurement of anisotropy on the Kimmeridge shale. In: 70th Annual International Meeting, SEG, Expanded Abstracts, pp. 1858–1861 (2000)Google Scholar
  13. 13.
    Jung, W.C., Hanna, K., Seokwon, J.: Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int. J. Rock Mech. Min. Sci. 50, 158–169 (2012)CrossRefGoogle Scholar
  14. 14.
    Claessona, J., Bohloli, B.: Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution. Int. J. Rock Mech. Min. Sci. 39, 991–1004 (2002)CrossRefGoogle Scholar
  15. 15.
    McLamore, R., Gray, K.E.: The mechanical behavior of the anisotropic sedimentary rocks. J. Eng. Ind. 89, 62–76 (1967)CrossRefGoogle Scholar
  16. 16.
    Istvan, J.A., et al.: Rock mechanics forgas storage in bedded salt caverns. Int. J. Rock Mech. Min. Sci. 34, 3–4 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xiao-shan Shi
    • 1
    • 2
  • Jing-rui Niu
    • 1
    • 2
  • Da-an Liu
    • 1
    • 2
  • Tie-wu Tang
    • 1
    • 2
  • Bonan Wang
    • 3
  • Weige Han
    • 1
    • 2
  1. 1.Key Laboratory of Shale Gas and GeoengineeringInstitute of Geology and Geophysics, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Mechanics and Civil EngineeringChina University of Mining and TechnologyBeijingChina

Personalised recommendations