Loading and Controlled Releasing of Anti-cancer Drug Bortezomib by Glucose-Containing Diblock Copolymer

  • Xiao-Ting Zhang
  • Hai-Liang Dong
  • Zhong-Li Niu
  • Jia-Ming Xu
  • Dan-Yue Wang
  • Han Tong
  • Xiao-Ze JiangEmail author
  • Mei-Fang ZhuEmail author
Conference paper


A glucose-containing diblock copolymer was employed as nanocarrier in this study for delivery of the anticancer drug bortezomib (BTZ). Our system was based on pH-induced dynamical conjugation of boronic acid on BTZ to cis-diols on glucose-containing polymer. Diblock copolymer poly(ethylene glycol)-b-poly (gluconamidoethyl methacrylate) (PEG-PGAMA), was firstly synthesized via atom transfer radical polymerization(ATRP) by successive polymerization of monomer gluconamidoethyl methacrylate (GAMA) using a PEG-based ATRP macroinitiator. BTZ was then loaded in glucose-containing copolymer as chemical conjugation occurred of boronic acid to glucose groups and the drug-released behavior of this system was simulated in vitro. The results demonstrated that PEG-PGAMA copolymer had strong ability to bind BTZ at physiological pH of 7.4; it could also effectively release BTZ at acid pH of 5.5(close to environment of cancer tissue or the subcellular endosome) in a pH-dependent manner. In our study, a facile and interesting nanocarrier system for anti-cancer drug bortezomib (BTZ) was provided with a kind of glucose-containing block copolymer without any need of chemical modification, which only utilized dynamic chemical complexation to reach effective drug-loading and controlled release of BTZ upon responsiveness to external pH.


Dynamic chemical complexation Glucose BTZ Diblock copolymer pH-responsive 



The authors gratefully acknowledged the financial support of the National Natural Science Foundation of China (No. 21204010, No. 51473035), and the Research Program of Shanghai Science and Technology Commission (No. 13NM1400102).


  1. 1.
    H. Maeda, L.W. Seymour, Y. Miyamoto, Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Cheminform 24, 351–362 (1993)Google Scholar
  2. 2.
    R.K. Jain, Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. Science 271, 1079–1080 (1996)CrossRefGoogle Scholar
  3. 3.
    K. Zhou, Y. Wang, X. Huang, K. Lubyphelps, B.D. Sumer, J. Gao, Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. 50, 6109–6114 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Lee, T. Ishii, H. Cabral, H.J. Kim, J.H. Seo, N. Nishiyama, H. Oshima, K. Osada, K. Kataoka, Inside cover: charge-conversional polyionic complex micelles & mdash; efficient nanocarriers for protein delivery into cytoplasm (Angew. Chem. Int. Ed. 29/2009). Angew. Chem. 48, 5309–5312 (2010)CrossRefGoogle Scholar
  5. 5.
    E.S. Lee, K. Na, Y.H. Bae, Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5, 325 (2005)CrossRefGoogle Scholar
  6. 6.
    B. Law, Protease-sensitive fluorescent nanofibers. Bioconjug. Chem. 18, 1701–1704 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Wookhyun, T. Julie, I. Emmanuel, L. Sébastien, L.C. Elliot, Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew. Chem. 49, 4257–4260 (2010)CrossRefGoogle Scholar
  8. 8.
    R.A. Petros, P.A. Ropp, J.M. Desimone, Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J. Am. Chem. Soc. 130, 5008 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Li, K. Xiao, J. Luo, W. Xiao, J.S. Lee, A.M. Gonik, J. Kato, T. Dong, K.S. Lam, Well-defined. Reversible disulfide cross-linked micelles for on-demand paclitaxel delivery, biomaterials 32, 6633–6645 (2011)Google Scholar
  10. 10.
    B. Law, C.H. Tung, Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconjug. Chem. 20, 1683 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, Y. Zhang, Y. Guan, New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. 1, 1867–1869 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Pasparakis, A. Cockayne, C. Alexander, Control of bacterial aggregation by thermoresponsive glycopolymers. J. Am. Chem. Soc. 129, 11014 (2007)CrossRefGoogle Scholar
  13. 13.
    M.C. Roberts, M.C. Hanson, A.P. Massey, E.A. Karren, P.F. Kiser, Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv. Mater. 19, 2503–2507 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Roy, J.N. Cambre, B.S. Sumerlin, Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers. Chem. Commun. 21, 2477–2479 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Y. Guan, S. Zhou, Permeability control of glucose-sensitive nanoshells. Biomacromol 8, 3842–3847 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Qin, V. Sukul, D. Pagakos, A. Chengzhong Cui, F. Jäkle, Preparation of organoboron block copolymers via ATRP of silicon and boron-functionalized monomers. Macromolecules 38, 800–804 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Li, E.N. Davis, J. Anderson, Q. Lin, Q. Wang, Development of boronic acid grafted random copolymer sensing fluid for continuous glucose monitoring. Biomacromol 10, 113–118 (2009)CrossRefGoogle Scholar
  18. 18.
    C. Cannizzo, S. Amigoni-Gerbier, C. Larpent, Boronic acid-functionalized nanoparticles: synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates. Polymer 46, 1269–1276 (2005)CrossRefGoogle Scholar
  19. 19.
    K.T. Kim, J.J.L.M. Cornelissen, R.J.M. Nolte, J.C.M.V. Hest, Polymeric monosaccharide receptors responsive at neutral pH. J. Am. Chem. Soc. 131, 13908 (2009)CrossRefGoogle Scholar
  20. 20.
    K.T. Kim, J.J.L.M. Cornelissen, R.J.M. Nolte, J.C.M.V. Hest, A polymersome nanoreactor with controllable permeability induced by stimuli-responsive block copolymers. Adv. Mater. 21, 2787–2791 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Zhang, Y. Lin, J. Wang, W. Yao, W. Wu, X. Jiang, A facile strategy for constructing boron-rich polymer nanoparticles via a boronic acid-related reaction. Macromol. Rapid Commun. 32, 534–539 (2011)Google Scholar
  22. 22.
    B. Wang, R. Ma, G. Liu, Y. Li, X. Liu, Y. An, L. Shi, Langmuir ACS J. Surf. Colloids 25, 12522 (2009)CrossRefGoogle Scholar
  23. 23.
    L. He, D.E. Fullenkamp, J.G. Rivera, P.B. Messersmith, pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem. Commun. 47, 7497–7499 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Liu, J.V.M. Weaver, A. Maud Save, S.P. Armes, Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18, 1347–1353 (2002)Google Scholar
  25. 25.
    S. Farhat, I. Marek, From vinyl sulfides, sulfoxides, and sulfones to vinyl transition metal complexes, Cheminform 33 (2010)CrossRefGoogle Scholar
  26. 26.
    K. Xiao, Y.P. Li, C. Wang, S. Ahmad, M. Vu, K. Kuma, Y.Q. Cheng, K.S. Lam, Biomaterials 67, 183–193 (2015)CrossRefGoogle Scholar
  27. 27.
    U. Hasegawa, M. Moriyama, H. Uyama, A.J.V.D. Vlies, Antioxidant micelles for bortezomib delivery. Colloid Polym. Sci. 293, 1887–1892 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Zhang, S. Su, K. Hu, L. Shao, X. Deng, W. Sheng, Y. Wu, Nanoscale 7, 19722–19731 (2015)CrossRefGoogle Scholar
  29. 29.
    J.S. Wang, K. Matyjaszewski, Controlled/“living” radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 23, 7901 (1995)CrossRefGoogle Scholar
  30. 30.
    K. Matyjaszewski, J. Xia, Atom transfer radical polymerization. J. Chem. Educ. 87, 2921–2990 (2001)Google Scholar
  31. 31.
    Q. Ma, E.E. Remsen, T. Kowalewski, K.L. Wooley, Two-dimensional, shell-cross-linked nanoparticle arrays. J. Am. Chem. Soc. 123, 4627 (2001)CrossRefGoogle Scholar
  32. 32.
    Q. Ma, E.E. Remsen, T. Kowalewski, A.J. Schaefer, K.L. Wooley, Environmentally-responsive, entirely hydrophilic, shell cross-linked (SCK) nanoparticles. Nano Lett. 1, 651–655 (2001)CrossRefGoogle Scholar
  33. 33.
    X.S. Wang, R.A.J. And, S.P. Armes, Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature. Chem. Commun. 18, 1817–1818 (2000)Google Scholar
  34. 34.
    X.S. Wang, R.A. Jackson, S.P. Armes, Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature. Macromolecules 33, 255–257 (2000)CrossRefGoogle Scholar
  35. 35.
    X.S.W. And, S.P. Armes, Facile atom transfer radical polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature. Macromolecules 33, 6640–6647 (2000)CrossRefGoogle Scholar
  36. 36.
    P. Huang, W. Wang, J. Zhou, F. Zhao, Y. Zhang, J. Liu, J. Liu, A. Dong, D. Kong, J. Zhang, ACS Appl. Mater. Interfaces. 7, 6340 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Springsteen, B. Wang, ChemInform abstract: Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem. Commun. 17, 1608–1609 (2001)CrossRefGoogle Scholar
  38. 38.
    J.Z. Du, X.J. Du, C.Q. Mao, J. Wang, Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 133, 17560 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xiao-Ting Zhang
    • 1
  • Hai-Liang Dong
    • 1
  • Zhong-Li Niu
    • 1
  • Jia-Ming Xu
    • 1
  • Dan-Yue Wang
    • 1
  • Han Tong
    • 1
  • Xiao-Ze Jiang
    • 1
    Email author
  • Mei-Fang Zhu
    • 1
    Email author
  1. 1.Shanghai National Key Laboratory for Fiber Material Modification, Department of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations