Failure Mechanisms of Ti–Al3Ti Metal-Intermetallic Laminate Composites

  • Yuan Meini
  • Li Yao
  • Li Lizhou
  • Chen Hehe
  • Huang Bin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Ti–Al3Ti Metal-Intermetallic Laminate (MIL) composites were fabricated by vacuum hot pressing. The failure mechanisms of Ti–Al3Ti MIL composites under the bending load and dynamic loading conditions were analyzed by three points bending test and finite element analysis respectively. The results indicated that the vertical crack existed in the as-deposited state Ti–Al3Ti MIL composites in the Al3Ti layers resulted by the thermal residual stress. The three points bending load- displacement curves of Ti–Al3Ti MIL composites embraced a long plateau region, indicating that Ti–Al3Ti MIL composites have excellent damage tolerance. Ti–Al3Ti MIL composites under high-speed impact was mostly under the tensile stress. In the high-speed impact period, the transverse, inclined, and vertical cracks which dramatically absorb the projectile kinetic energy formed in Al3Ti phase.


Metal-intermetallic laminate composites Three points bending Finite element method High-speed impact 



The authors acknowledge the financial support provided by the Natural Science of China (51201155), the Natural Science of Shanxi province (2012011019-1, 2012011007-1), and the Chinese Education Ministry Foundation for Doctors (20101420120006).


  1. 1.
    D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall. Mater. Trans. A 32(6), 1493–1505 (2001)CrossRefGoogle Scholar
  2. 2.
    J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multilayered composites from element foils. Mater. Sci. Eng., A 379(1/2), 164–172 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Cao, C.H. Guo, S.F. Zhu et al., Fracture behavior of Ti/Al3Ti metal-intermetallic laminate (MIL) composite under dynamic loading. Mater. Sci. Eng., A 637, 235–242 (2005)CrossRefGoogle Scholar
  4. 4.
    S.A. Zelepugin, S.S. Shpakov, Failure of metallic-intermetallic multilayered composite under high-velocity impact. J. Comp. Mech. Design 15(3), 369–382 (2009)Google Scholar
  5. 5.
    P.J. Zhou, C.H. Guo, E.H. Wang et al., Interface tensile and fracture behavior of the Ti/Al3Ti Metal-Intermetallic Laminate (MIL) composite under quasi-static and high strain rates. Mater. Sci. Eng., A 665, 66–75 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Jiang, R.M. Kulin, K.S. Vecchio, Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites. J. Min. Met. Mater. Soc. 62(1), 35–40 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51, 2933–2957 (2003)CrossRefGoogle Scholar
  8. 8.
    T.Z. Li, F. Grignon, D.J. Benson, K.S. Vecchio et al., Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 374(1–2), 10–26 (2004)CrossRefGoogle Scholar
  9. 9.
    D.R. Leseur, Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. Technical Report DOT/FAA/AR-00/25. US department of Transportation. Federal Aviation Administration, September 2000Google Scholar
  10. 10.
    G. Kay, Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Technical Report DOT/FAA/AR-03/57. US department of Transportation, Federal Aviation Administration, September 2003Google Scholar
  11. 11.
    Y. Cao, S.F. Zhu, C.H. Guo, K.S. Vecchio, Numerical investigation of the ballistic performance of metal-intermetallic laminate composites. Appl. Compos. Mater. 22, 437–456 (2015)CrossRefGoogle Scholar
  12. 12.
    D.S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, T. Berstad, Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA, in 4th European LS-dyna Users Conference, 2003, pp. 47–60Google Scholar
  13. 13.
    T.J. Holmquist, G.R. Johnson, Modeling prestressed ceramic and its effect on ballistic performance. Int. J. Impact Eng. 31(2), 113–127 (2005)CrossRefGoogle Scholar
  14. 14.
    B. Dang, X. Zhang, Y.Z. Chen et al., Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Scientific Reports, 6(30874) (2016), pp. 1–10Google Scholar
  15. 15.
    D.R. Hartman, S.J. Bless, S.J. Hanchak, Ballistic performance of thick S-2 glass composites, in Proceedings of the Symposium on Composite Materials in Armament Applications, UDR-TR-85-88a, 20–22 August 1985Google Scholar
  16. 16.
    D. Sherman, T. Ben-Shushan, Quasi-static impact damage in confined ceramic tiles. Int. J. Impact Eng. 21(4), 245e65 (1998)CrossRefGoogle Scholar
  17. 17.
    N.A. Fellows, P.C. Barton, Development of impact model for ceramic faced semi-infinite armour. Int. J. Impact Eng. 22, 793–811 (1999)CrossRefGoogle Scholar
  18. 18.
    Z.H. Tan, X. Han, W. Zhang, S.H. Luo, An investigation on failure mechanisms of ceramic/metal armour subjected to the impact of tungsten projectile. Int. J. Impact Eng. 37, 1162–1169 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Yahaya, S.M. Sapuan, M. Jawaid et al., Measurement of ballistic impact properties of woven kenaf-aramid hybrid composites. Measurement 77, 335–343 (2016)CrossRefGoogle Scholar
  20. 20.
    W.L. Cheng, S. Langlie, S. Itoh, High Velocity impact of thick composites. Int. J. Impact Eng. 29, 167–184 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yuan Meini
    • 1
    • 2
  • Li Yao
    • 1
  • Li Lizhou
    • 1
  • Chen Hehe
    • 1
  • Huang Bin
    • 2
  1. 1.College of Mechanical and Electrical EngineeringNorth University of ChinaTaiyuanChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations