Preparation of Large Size Monolayer MoS2 by a Two-Step Heating Process by CVD

  • Fengjiao Lv
  • Yi Zeng
  • Bo Liu
  • Bin Tang
  • Qing Chen
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Due to their fascinating properties, two-dimensional monolayer transition metal dichalcogenides (TMDs) have attracted a lot research interests in the recent years. Chemical vapor deposition (CVD) is the most effective way to grow monolayer TMDs in large area. However, to grow high quality monolayer TMDs controllably by CVD is still a challenge. Here, a two-step heating CVD process was developed to grow monolayer MoS2, which the crystal size is obviously larger than that grown by traditional one-step heating CVD process. The effects of growing time and the distance from the Mo source to the size and density of MoS2 crystals are also studied. The largest size of individual MoS2 triangle reaches 62 µm in edge length.


MoS2 CVD Monolayer Growth Heating process 



This work was supported by NSF of China (Grant No. 61775006 and 11374022).


  1. 1.
    Y. Lee, J. Lee, H. Bark, I.K. Oh, G.H. Ryu, Z. Lee, H. Kim, J.H. Cho, J.H. Ahn, C. Lee, Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 6(5), 2821–2826 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRefGoogle Scholar
  3. 3.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)CrossRefGoogle Scholar
  4. 4.
    W. Han, D. Nezich, K. Jing, T. Palacios, Graphene frequency multipliers. IEEE Electron Device Lett. 30(5), 547–549 (2009)CrossRefGoogle Scholar
  5. 5.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Lee, S. Pak, P. Giraud, Y.W. Lee, Y. Cho, J. Hong, A.R. Jang, H.S. Chung, W.K. Hong, H.Y. Jeong, H.S. Shin, L.G. Occhipinti, S.M. Morris, S. Cha, J.I. Sohn, J.M. Kim, Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices. Adv. Mater. 29(33), 1702206 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, T. Palacios, BN/Graphene/BN transistors for RF applications. IEEE Electron Device Lett. 32(9), 1209–1211 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Hsu, H. Wang, Y.C. Shin, B. Mailly, X. Zhang, L. Yu, Y. Shi, Y.H. Lee, M. Dubey, K.K. Kim, J. Kong, T. Palacios, Large-area 2-D electronics: materials, technology, and devices. Proc. IEEE 101(7), 1638–1652 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47(4), 1067–1075 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, T.W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Xie, Z. Wang, Y. Zhan, P. Zhang, R. Wu, T. Jiang, S. Wu, H. Wang, Y. Zhao, T. Nan, X. Ma, Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications. Nanotechnology 28(8), 084001 (2017)CrossRefGoogle Scholar
  14. 14.
    H.M. Oh, G.H. Han, H. Kim, M.S. Jeong, Influence of residual promoter to photoluminescence of CVD grown MoS2. Curr. Appl. Phys. 16(9), 1223–1228 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10(10), 4134–4139 (2010)CrossRefGoogle Scholar
  16. 16.
    Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.H. Tan, M. Kan, J. Feng, Q. Sun, Z. Liu, Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13(8), 3870–3877 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013)CrossRefGoogle Scholar
  18. 18.
    W. Liao, W. Wei, Y. Tong, W.K. Chim, C. Zhu, Electrical performance and low frequency noise in hexagonal boron nitride encapsulated MoSe2 dual-gated field effect transistors. Appl. Phys. Lett. 111(8), 082105 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Li, L. Yang, M. Si, S. Li, M. Huang, P. Ye, Y. Wu, Performance potential and limit of MoS2 transistors. Adv. Mater. 27(9), 1547–1552 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Ahn, J. Lee, H.U. Kim, H. Bark, M. Jeon, G.H. Ryu, Z. Lee, G.Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim, Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 27(35), 5223–5229 (2015)CrossRefGoogle Scholar
  21. 21.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)CrossRefGoogle Scholar
  22. 22.
    H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012)CrossRefGoogle Scholar
  23. 23.
    S.W. Min, H.S. Lee, H.J. Choi, M.K. Park, T. Nam, H. Kim, S. Ryu, S. Im, Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance. Nanoscale 5(2), 548–551 (2013)CrossRefGoogle Scholar
  24. 24.
    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554–561 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Ling, Y.H. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14(2), 464–472 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Bosi, Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv. 5(92), 75500–75518 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Cao, T. Shen, P. Liang, X. Chen, H. Shu, Role of Chemical potential in flake shape and edge properties of monolayer MoS2. J. Phys. Chem. C 119(8), 4294–4301 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Shahzad, T. Kim, S.W. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films 641, 79–86 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fengjiao Lv
    • 1
  • Yi Zeng
    • 1
  • Bo Liu
    • 1
  • Bin Tang
    • 1
  • Qing Chen
    • 1
  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices, Department of ElectronicsPeking UniversityBeijingChina

Personalised recommendations