Microstructure and Mechanical Properties of Aluminum Clad Steel Plates by Cold Rolling and Annealing Heat Treatment

  • Fuxing Yin
  • Jiule Ma
  • Baoxi Liu
  • Jining He
  • Fanyong Zhang
  • Mingyang Liu
  • Yanchun Dong
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Aluminum clad steel plate has been successfully fabricated by cold rolling and annealing heat treatment. The thicknesses of total clad plate and aluminum cladding layer were about 1.5 mm and 50–70 μm, respectively. The grain morphology, mechanical properties revealed a slight anisotropy. Herein, the grains were severe elongated along the cold rolling direction. The clad plates exhibited a superior tensile elongation and slight interfacial delamination, and highest value of multiple bending fracture times was located at the clad plate along the angle of 45°. Moreover, the perfect interfacial brazing bonding presented at the base clad plate and fins, which can be used in the power station.


Aluminum clad steel plate Cold rolling and annealing Elongated grain Mechanical anisotropy Interfacial delamination 



This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51601055, 51304059, the Hebei Science and Technology program under Grant No. 130000048, the National Natural Science Foundation of Hebei Province under Grant Nos. E201620218 and QN2016029.


  1. 1.
    H. Kawase, M. Makimoto, K. Takagi, Y. Ishida, T. Tanaka, Development of aluminum clad steel by roll bonding. Trans. ISIJ 23, 628–632 (1983)CrossRefGoogle Scholar
  2. 2.
    M.M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni, R. Kovacevic, Welding of aluminum alloys to steels: an overview. J. Manuf. Sci. Prod. 14, 59–78 (2014)Google Scholar
  3. 3.
    L. Li, K. Nagai, F.X. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9, 1–11 (2008)Google Scholar
  4. 4.
    Y. Wang, S.G. Zhou, K.S. Vecchio, Annealing effects on the microstructure and properties of an Fe-based metallic-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 665, 47–58 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, K.S. Vecchio, Microstructure evolution in a martensitic 430 stainless steel-Al metallic-intermetallic laminate (MIL) composite. Mater. Sci. Eng., A 643, 72–85 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, K.S. Vecchio, Microstrcutre evolution in Fe-based-aluminide metallic-intermetallic laminate (MIL) composites. Mater. Sci. Eng., A 649, 325–337 (2016)CrossRefGoogle Scholar
  7. 7.
    P.C. Tortorici, M.A. Dayananda, Phase formation and interdiffusion in Al-clad 430 stainless steels. Mater. Sci. Eng., A 244, 207–215 (1998)CrossRefGoogle Scholar
  8. 8.
    H.D. Manesh, A.K. Taheri, The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Mater. Des. 24, 617–622 (2003)CrossRefGoogle Scholar
  9. 9.
    W.S. Hwang, T.I. Wu, W.C. Sung, Effect of heat treatment on mechanical property and microstructure of aluminum/stainless steel bimetal plate. J. Eng. Mater. Technol. 134, 014501-1-6 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Nishimoto, K. Akamatsu, Preparation of homogeneous Fe-Al intermetallic compound sheet by multi-layered rolling and subsequent heat treatment. Mater. Sci. Forum 561–565, 857–860 (2007)CrossRefGoogle Scholar
  11. 11.
    H.Y Wu, S. Lee, J. Wang, Solid-state bonding of iron-based alloys, steel–brass, and aluminum alloys. J. Mater. Process. Technol. 75, 173–179 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Talebian, M. Alizadeh, Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Mater. Sci. Eng., A 590, 186–193 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Soltan, A. Nezhad, A. Haerian Ardakani, A study of joint quality of aluminum and low carbon steel strips by warm rolling. Mater. Des. 30, 1103–1109 (2009)CrossRefGoogle Scholar
  14. 14.
    X. Liu, S. Lan, J. Ni, Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 59, 50–62 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Kimapong, T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans. 46, 835–841 (2005)CrossRefGoogle Scholar
  16. 16.
    K. Lee, S. Kumai, T. Arai, Interfacial microstructure and strength of steel to aluminum alloy lap joints welded by a defocused laser beam. Mater. Trans. 46, 1847–1856 (2005)CrossRefGoogle Scholar
  17. 17.
    R.F. Qiu, H.X. Shi, K. Zhang, Y. Tu, C. Iwamoto, S. Satonaka, Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Mater. Charact. 61, 684–688 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel. Mater. Lett. 62, 4158–4160 (2008)CrossRefGoogle Scholar
  19. 19.
    S.H. Choi, J.W. Kwon, K.H. Oh, Prediction of inhomogeneous texture in clad sheet metals by hot roll bond method. Met. Mater. 2, 133–140 (1996)CrossRefGoogle Scholar
  20. 20.
    S.C. Pan, M.N. Huang, G.-Y. Tzou, S.W. Syu, Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction. J. Mater. Process. Technol. 177, 114–120 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Jiang, D.S. Peng, D. Lu, L.X. Li, Analysis of clad sheet bonding by cold rolling. J. Mater. Process. Technol. 105, 32–37 (2000)CrossRefGoogle Scholar
  22. 22.
    H.R. Akramifard, H. Mirzadeh, M.H. Parsa, Cladding of aluminum on AISI 30 4L stainless steel by cold roll bonding: mechanism, microstructure, and mechanical properties. Mater. Sci. Eng., A 613, 232–239 (2014)CrossRefGoogle Scholar
  23. 23.
    H.D. Manesh, A.K. Taheri, Study of mechanisms of cold roll welding of aluminum alloy to steel strip. Mater. Sci. Technol. 20, 1064–1068 (2004)CrossRefGoogle Scholar
  24. 24.
    G. Tzou, M. Huang, Analytical modified model of the cold bond rolling of unbounded double-layers sheet considering hybrid friction. J. Mater. Process. Technol. 140, 622–627 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Voncina, H.S. Hrenko, J. Medved, Interaction between Al99.5 and stainless steel at elevated temperature and pressure. RMZ—M&G 62, 213–224 (2015)Google Scholar
  26. 26.
    R. Jamaati, M.R. Toroghinejad, Cold roll bonding bond strengths: review. Mater. Sci. Technol. 27, 1101–1108 (2011)CrossRefGoogle Scholar
  27. 27.
    S.H. Choi, K.H. Kim, K.H. Oh, D.N. Lee, Tensile deformation behavior of stainless steel clad aluminum bilayer sheet. Mater. Sci. Eng., A 222, 158–165 (1997)CrossRefGoogle Scholar
  28. 28.
    Q. Qin, Z.H. Wu, Y. Zang, B. Guan, F.X. Zhang, Warping deformation of 316l/q345r stainless composite plate after removal strake. World J. Eng. 13, 206–209 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Qin, Z.H. Wu, Y. Zang, B. Guan, A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate. Adv. Mech. Eng. 7, 1–13 (2015)Google Scholar
  30. 30.
    D.N. Lee, Y.K. Kim, Tensile properties of stainless steel-clad aluminum sandwich sheet metals. J. Mater. Sci. 23, 1436–1442 (1988)CrossRefGoogle Scholar
  31. 31.
    H.Y. Wang, X. Li, Z.H. Wang, D.W. Zhao, D.H. Zhang, Analysis of sandwich rolling with two different thicknesses outer layers based on slab method. Int. J. Mech. Sci. 106, 194–208 (2016)CrossRefGoogle Scholar
  32. 32.
    P.S. Stieif, Interfacial instabilities in an unbonded layered solid. Int. J. Solids Struct. 26, 915–935 (1990)CrossRefGoogle Scholar
  33. 33.
    S.L. Semiatin, H.R. Piehler, Forming limits of sandwich sheet materials. Metall. Trans. A 10, 1107–1118 (1979)CrossRefGoogle Scholar
  34. 34.
    F. Afrouz, A. Parvizi, An analytical model of asymmetric rolling of unbounded clad sheets with shear effects. J. Manuf. Process. 20, 162–171 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Uscinowicz, Experimental identification of yield surface of Al-Cu bimetallic sheet. Compos. B 55, 96–108 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Kimura, T. Inoue, F.X. Yin, K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057–1059 (2008)CrossRefGoogle Scholar
  37. 37.
    S.M. Allen, E.L. Thomas, The Structure of Material (Wiley, 1999), pp. 359–363Google Scholar
  38. 38.
    L.J. Huang, L. Geng, Discontinuously Reinforced Titanium Matrix Composites (Springer, 2007), pp. 1–180Google Scholar
  39. 39.
    A. Cetin, C. Bernardi, A. Mortensen, An analysis of the tensile elongation to failure of laminated metal composites in the presence of strain-rate hardening. Acta Mater. 60, 2265–2276 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fuxing Yin
    • 1
  • Jiule Ma
    • 2
  • Baoxi Liu
    • 1
  • Jining He
    • 1
  • Fanyong Zhang
    • 1
  • Mingyang Liu
    • 1
  • Yanchun Dong
    • 1
  1. 1.School of Materials Science and Engineering, Research Institute for Energy Equipment Materials, TianJin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling TechnologyHebei University of TechnologyTianjinChina
  2. 2.School of Materials Science and EngineeringHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations