Advertisement

Dielectric and Impedance Studies on (K0.5Na0.5)NbO3-Based Ceramics

  • Yafei Yan
  • Minhong Jiang
  • Jiageng Song
  • Chongyan Hao
  • Qi Jin
  • Shengnan Han
  • Lin Li
  • Jinwei Zhang
  • Xiaoyu Yao
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Polycrystalline, lead-free (K0.5Na0.5)NbO3-based ceramics were synthesized using solid-state reaction method. The microstructure, dielectric and impedance characteristics of the ceramics were studied. The results showed that the obtained doped ceramic had a pure perovskite structure with pseudo-cubic phase. Some dielectric anomalies were observed at about 200 °C, and 500 °C for the ceramics, respectively. With the increase of BaBiO3 doping content, the dielectric constant-temperature transition peak value became weaker. The activation energy of conductivity is found to be closely related to the frequency. The activation energy obtained from the dielectric relaxation data was attributed to oxygen vacancies. The calculated activation energies at 10 kHz for the temperature range (200–500 °C) and (200–350 °C) and (350–500 °C) are 0.657, 0.542 and 0.350 eV, respectively.

Keywords

K0.5Na0.5NbO3 Ceramic Impedance Dielectric 

References

  1. 1.
    G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3, and (Na, K)NbO3. Phys. Rev. 96, 581–588 (1954)CrossRefGoogle Scholar
  2. 2.
    D.E. Harrison, G. Shirane, Crystal growth and structural study of the barium-titanium-phosphate phosphor. J. Electrochem. Soc. 108, 788–790 (1961)CrossRefGoogle Scholar
  3. 3.
    R.E. Jaeger, L. Egerton, Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962)CrossRefGoogle Scholar
  4. 4.
    M. Jiang, X. Liu, G. Chen, Phase structures and electrical properties of new lead-free Na0.53-BiFeO ceramics. Scripta. Mater. 60, 909–912 (2009)Google Scholar
  5. 5.
    M.H. Jiang, G.Q. Zhao, Z.F. Gu et al., In-depth structure characterization and properties of (1 − x)(Li0.05Na0.475K0.475)(Nb0.95Sb0.05)O3-xBiFeO3, lead-free piezoceramics. J. Mater. Sci Mater. Electron. 26, 9366–9372 (2015)Google Scholar
  6. 6.
    J. Tellier, B. Malic, B. Dkhil et al., Crystal structure and phase transitions of sodium potassium niobateperovskites. Solid State Sci. 11, 320–324 (2009)CrossRefGoogle Scholar
  7. 7.
    W. Ge, Y. Ren, J. Zhang et al., A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x%LiNbO3 solid solution. J. Appl. Phys. 111, S84–S13 (2012)Google Scholar
  8. 8.
    D. Kobor, B. Guiffard, L. Lebrun et al., Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phy. D: Appl. Phys. 40, 2920–2926 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Jiang, C.A. Randall, H. Guo et al., Seed-free solid-state growth of large lead-free piezoelectric single crystals: (Na1/2K1/2)NbO3. J. Am. Ceram. Soc. 98, 2988–2996 (2015)CrossRefGoogle Scholar
  10. 10.
    J.R. Macdonald, W.B. Johnson, Fundamentals of Impedance Spectroscopy. Impedance Spectroscopy (2005), pp. 1–26Google Scholar
  11. 11.
    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)CrossRefGoogle Scholar
  12. 12.
    J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. 55, 114–118 (1998)Google Scholar
  13. 13.
    D.C. Sinclair, A.R. West, Electrical properties of a LiTaO3 single crystal. Phys. Rev. B Condens. Matter 39, 13486–13492 (1989)CrossRefGoogle Scholar
  14. 14.
    V.V. Kirillov, V.A. Isupov, Relaxation polarization of PbMg1/3Nb2/3O3(PMN)-A ferroelectric with a diffused phase transition. Ferroelectrics 5, 3–9 (1973)CrossRefGoogle Scholar
  15. 15.
    A. Niemer, R. Pankrath, K. Betzler, Dielectric properties and the phase transition of pure and cerium doped calcium-barium-niobate. J. Phys.-Condens. Mat. 2, 80–84 (2012)Google Scholar
  16. 16.
    K. Uchino, S. Nomura, Dielectric properties and the phase transition of pure and cerium doped calcium-barium-niobate. Ferroelectrics 50, 191–196 (1983)CrossRefGoogle Scholar
  17. 17.
    P. Han, Q. Li, Y.X. Zhu, Mutation of causes meristem defects by failing to confine expression to the organizing center. Spectrochim. Acta Part A J. Mol. Spectrosc. 44, 853–853 (2008)Google Scholar
  18. 18.
    S. Poykko, D.J. Chadi, First principles study of Pb vacancies in PbTiO3. Appl. Phys. Lett. 76, 499–501 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Steinsvik, R. Bugge, J.G. Jonnes, The defect structure of SrT1-xFexO3-y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969–976 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yafei Yan
    • 1
  • Minhong Jiang
    • 1
  • Jiageng Song
    • 1
  • Chongyan Hao
    • 1
  • Qi Jin
    • 1
  • Shengnan Han
    • 1
  • Lin Li
    • 1
  • Jinwei Zhang
    • 1
  • Xiaoyu Yao
    • 1
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations