The Effect of Mechanical Shot Blasting in Producing the Surface Ultrafined Grain Layer on Large-Size Titanium Plate

  • Quantong Yao
  • Guanglan Zhang
  • Ying Gao
  • Weiping Tong
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


This paper reported that the mechanical shot blasting was a feasible method for producing ultra-fined grain layer on large-size titanium plate. The MSB effects on producing ultra-fined layer were investigated by optical microscopy, X-ray diffraction, transmission electron microscopy, and micro-hardness tester. The experimental results showed that the thickness of the surface severe plastic deformation layer increased with the improvement in processing speed, but presented stabilization with prolonging the processing durations. The maximum thickness of the ultra-fined grain layer was about 320 μm, and the minimum grain size in the topmost surface was about 180 nm. The ultra-fined grain presented equiaxed grain morphology with random crystallographic orientation.


Titanium plate Mechanical shot blasting Ultra-finedgrain layer Hardness 


  1. 1.
    Q.T. Yao, J. Sun, Y.Z. Fu, W.P. Tong, H. Zhang, Materials 9, 993 (2016)CrossRefGoogle Scholar
  2. 2.
    Q.T. Yao, J. Sun, G.L. Zhang, W.P. Tong, H. Zhang, Vacuum 142, 45 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Sun, Q.T. Yao, Y.H. Zhang, X.D. Du, Y.C. Wu, W.P. Tong, Surf. Coat. Tech. 309, 382 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Huang, Y. Han, Mat. Sci. Eng. C-Mater. 33, 2353 (2013)CrossRefGoogle Scholar
  5. 5.
    Q.T. Yao, J. Sun, D.P. Shen, W.P. Tong, L. Zuo, submitted to Adv. Eng. Mater. (2017)Google Scholar
  6. 6.
    Q.T. Yao, J. Sun, G.L. Zhang, W.P. Tong, H. Zhang, submitted to Nano (2017)Google Scholar
  7. 7.
    M.J. Qarni, G. Sivaswamy, A. Rosochowski, S. Bocakal, Mater. Design. 122, 385 (2017)CrossRefGoogle Scholar
  8. 8.
    A.P. Murugesan, V. Rajinikanth, B. Mahato, M. Wegner, M. Witte, G. Wilde, S.G. Chowdhury, Mat. Sci. Eng. A. 700, 487 (2017)CrossRefGoogle Scholar
  9. 9.
    N.R. Tao, M.L. Sui, J. Lu, K. Lu, Nanostruct. Mater. 11, 433 (1999)CrossRefGoogle Scholar
  10. 10.
    G.B. Li, J. Chen, D.L. Guan, Tribol. Int. 43, 2216 (2010)CrossRefGoogle Scholar
  11. 11.
    W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Science 299, 686 (2003)CrossRefGoogle Scholar
  12. 12.
    C.T. Wang, H. Zhou, P.Y. Lin, N. Sun, Q.C. Guo, J.X. Yu, M.X. Wang, Y. Zhao, L.Q. Ren, J. Phys. D Appl. Phys. 43, 1 (2010)Google Scholar
  13. 13.
    Q.T. Yao, J. Sun, G.L. Zhang, W.P. Tong, L. Zuo, submitted to Adv. Eng. Mater. (2017)Google Scholar
  14. 14.
    A.L. Ortiz, J.W. Tian, L.L. Shaw, P.K. Liaw, Scripta Mater. 62, 129 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Sun, W.P. Tong, L. Zuo, Z.B. Wang, Mater. Design. 47, 408 (2013)CrossRefGoogle Scholar
  16. 16.
    X.D. Zhang, N. Hansen, Y.K. Gao, X.X. Huang, Acta Mater. 60, 5933 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Lu, N. Hansen, Scr. Mater. 60, 1033 (2009)CrossRefGoogle Scholar
  18. 18.
    J.Z. Lu, L.J. Wu, G.F. Sun, K.Y. Luo, Y.K. Zhang, J. Cai, C.Y. Cui, X.M. Luo, Acta Mater. 127, 252 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Quantong Yao
    • 1
  • Guanglan Zhang
    • 1
  • Ying Gao
    • 1
  • Weiping Tong
    • 1
  1. 1.Key Laboratory of Electromagnetic Processing of MaterialsMinistry of Education, Northeastern UniversityShenyangChina

Personalised recommendations