Thermodynamic Description of the Al–Mg–Y System

  • Kaiming Cheng
  • Jixue Zhou
  • Jingrui Zhao
  • Shouqiu Tang
  • Yuansheng Yang
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The Al–Mg–Y system was critically assessed by means of the CALPHAD technique. The solution phases of liquid, face-centered cubic (FCC), body-centered cubic (BCC) and hexagonal close-packed (HCP) were modeled with Redlich–Kister equation. The thermodynamic models of compounds Al12Mg17, Al30Mg23 and Al3Mg2 in the Al–Mg system, AlY2, Al2Y3, AlY and Al3Y in the Al–Y system, as well as Mg24Y5 in the Mg–Y system were kept consistent with that of the corresponding binary systems. In order to reproduce the ternary solid solubility of previously determined isothermal section at 400 °C, an identical formula of (Al,Mg,Y)2(Al,Mg,Y) was used to model Al2Y phase in the Al–Y system and Mg2Y in the Mg–Y system. The ordered part of BCC phase, i.e. the BCC_B2 phase, was treated with a thermodynamic model of (Al,Mg,Y)0.5(Al,Mg,Y)0.5(Va)3. The ternary phase of Al4MgY was described as linear compound with sub-lattice model. On the basis of the optimized thermodynamic parameters of Al–Mg, Al–Y and Mg–Y systems in literature, the Al–Mg–Y system was optimized in present work. The currently calculated isothermal sections at 400 and 800 °C, as well as the liquidus surface projection agree well with the previous experimental data.


Thermodynamic modeling Al–Mg–Y alloy Phase relation 



The authors are grateful for the financial support from the National Key Research and Development Program of China (No. 2016YFB0701202 and No. 2016YFB0301105), the Natural Science Foundation of Shandong province (ZR2017BEM022) and the Youth Foundation of Shandong Academy of Sciences (2014QN024).


  1. 1.
    Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metall. Sin. (Engl. Lett.) 21, 313–328 (2008)Google Scholar
  2. 2.
    G. Pettersen, H. Westengen, R. Hoier, O. Lohne, Mater. Sci. Eng., A 207, 115–120 (1996)CrossRefGoogle Scholar
  3. 3.
    D. Qiu, M.X. Zhang, J.A. Taylor, P.M. Kelly, Acta Mater. 57, 3052–3059 (2009)CrossRefGoogle Scholar
  4. 4.
    J.C. Dai, M.A. Easton, S.M. Zhu, G.H. Wu, W.J. Ding, J. Mater. Res. 27, 2790–2797 (2012)CrossRefGoogle Scholar
  5. 5.
    J.C. Dai, S.M. Zhu, M.A. Easton, M.X. Zhang, D. Qiu, G.H. Wu, W.C. Liu, W.J. Ding, Mater. Sci. Eng., A 576, 298–305 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Pisch, R. Schmid-Fetzer, G. Cacciamani, P. Riani, A. Saccone, R. Ferro, Z. Metallkd. 89, 474–477 (1998)Google Scholar
  7. 7.
    G. Cacciamani, P. Riani, G. Borzone, N. Parodi, A. Saccone, R. Ferro, A. Pisch, R. Schmid-Fetzer, Intermetallics 7, 101–108 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Gröbner, R. Schmid-Fetzer, A. Pisch, G. Cacciamani, P. Riani, R. Ferro, Z. Metallkde. 90, 872–880 (1999)Google Scholar
  9. 9.
    J. Gröbne, D. Kevorkov, R. Schmid-Fetzer, Z. Metallkd. 92, 2–7 (2001)Google Scholar
  10. 10.
    S. De Negri, A. Saccone, G. Cacciamani, R. Ferro, Intermetallics 11, 1125–1134 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Cacciamani, S. De Negri, A. Saccone, R. Ferro, Intermetallics 11, 1135–1151 (2003)CrossRefGoogle Scholar
  12. 12.
    L.L. Jin, D. Kevorkov, M. Medraj, P. Chatrand, J. Chem. Thermodynamics. 58, 166–195 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Al Shakhshir, M. Medraj, J. Phase Equilb. Diffus. 27, 231–244 (2006)CrossRefGoogle Scholar
  14. 14.
    X.J. Liu, C.P. Wang, M.Z. Wen, X. Chen, F.S. Pan, Rare Met. 25, 441–447 (2006)CrossRefGoogle Scholar
  15. 15.
    M.E. Drits, E.M. Padezhnova, T.V. Dobatkina, Russ. Metall. 3, 197–201 (1979)Google Scholar
  16. 16.
    O.S. Zarechnyuk, M.E. Drits, R.M. Rykhal, V.V. Kinzhibalo, Russ. Metall. 5, 214–217 (1980)Google Scholar
  17. 17.
    K.O. Odinev, I.N. Ganiev, V.V. Kinzhibalo, K.K. Kurbanov, Tsvetn. Metall. 4, 75–77 (1989)Google Scholar
  18. 18.
    N. Saunders, CALPHAD 14, 61–70 (1990)CrossRefGoogle Scholar
  19. 19.
    S.H. Liu, Y. Du, H.L. Chen, CALPHAD 30, 334–340 (2006)CrossRefGoogle Scholar
  20. 20.
    C.P. Guo, Z.M. Du, C.R. Li, CALPHAD 31, 75–88 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Hillert, L.I. Staffansson, Acta Chem. Scand. 24, 3618–3626 (1970)CrossRefGoogle Scholar
  22. 22.
    B. Sundman, J. Agren, J. Phys. Chem. Solids 42, 297–301 (1981)CrossRefGoogle Scholar
  23. 23.
    B. Sundman, B. Jansson, J.-O. Andersson, CALPHAD 9, 153–190 (1985)CrossRefGoogle Scholar
  24. 24.
    G.J. Shiflet, J.K. Lee, H.I. Aaronson, CALPHAD 3, 129–137 (1979)CrossRefGoogle Scholar
  25. 25.
    Y.M. Muggianu, M. Gambino, J.-P. Bros, J. Chim. Phys. 72, 83–88 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kaiming Cheng
    • 1
  • Jixue Zhou
    • 1
  • Jingrui Zhao
    • 1
  • Shouqiu Tang
    • 1
  • Yuansheng Yang
    • 2
  1. 1.Shandong Key Laboratory for High Strength Lightweight Metallic MaterialsAdvanced Materials Institute, Shandong Academy of SciencesJinanChina
  2. 2.Institute of Metal Research, Chinese Academy of SciencesShenyangChina

Personalised recommendations