Advertisement

Tensile Fracture Characteristics Along Different Directions of Laminated Ti-TiBw/Ti Composites with Two-Scale Hierarchical Structures Fabricated by Reaction Hot Pressing

  • Baoxi Liu
  • Lujun Huang
  • Xiping Cui
  • Lin Geng
  • Fuxing Yin
Conference paper

Abstract

The tensile behaviors and fracture characteristics of laminated Ti-TiBw/Ti composites with two-scale hierarchical structures along different directions were investigated in detail. The laminated Ti-TiBw/Ti composites exhibited the highest tensile strength and fracture elongation along the longitudinal direction. Multi-necking and interfacial “intercrystalline-like” network fracture dominated the fracture behaviors along the transversal direction, which are attributed to the high strain (\( \mathop \varepsilon \nolimits_{\text{Ti}} \)), low strain hardening exponent (\( \mathop n\nolimits_{\text{Ti}} \)) of Ti layer, and obvious strain misfit at the interface, respectively. The longitudinal fracture characteristics of laminated Ti-TiBw/Ti composites reveals diffuse necking delaying, localized shear band transferring, tunnel cracks blunting, micro-cracks insensitivity, crack bifurcation and interfacial delamination absenting phenomena, which are beneficial to the toughening the laminated composites.

Keywords

Metal-matrix composites (MMCs) Layered structures Damage mechanics Fractography 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51601055, 51671068, 51471063 and 51401068, the Hebei Science and Technology program under Grant No. 130000048, the National Natural Science Foundation of Hebei Province under Grant Nos. E201620218 and QN2016029. The Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETIII.201401 and NSRIF.2014001).

References

  1. 1.
    Tjong SC, Mai YW. Processing-structure-propertiy aspects of particulate- and whisker-reinforced titanium matrix composites. Comp. Sci. Techn. 68 (2008) 583–601.Google Scholar
  2. 2.
    Huang LJ, Geng L, Peng HX. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Progress in Materials Science. 71 (2015) 93–168.Google Scholar
  3. 3.
    Wang ZR, Suo Z, Evans AG. Deformation mechanisms in nacre. J. Mater. Res. 169 (2001) 2485–2493.Google Scholar
  4. 4.
    K. Lu. The future of metals [J]. Science, 328 (2010) 319–320.Google Scholar
  5. 5.
    Wu H, Jin BC, Geng L, Fan GH, Cui XP, Huang M, et al. Ductile-phase toughening in TiBw/Ti-Ti3Al metallic-intermetallic laminate composites. Metal. Mater. Trans. A. 46 (2015): 3803–3807.Google Scholar
  6. 6.
    Fang TH, Li WL, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 331 (2011) 1587–1590.Google Scholar
  7. 7.
    Wadsworth J, Lesuer DR. Ancient and modern laminated composites-from the great pyramid of Gizeh to Y2 K. Mater. Charact. 45 (2000) 289–313.Google Scholar
  8. 8.
    Wu H, Fan GH, Jin, BC, Geng L, Cui XP, Huang M. Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites. Mater. Des. 89 (2016) 697–702.Google Scholar
  9. 9.
    Panda KB, Ravichandran KS. Tianium-titanium boride (Ti-TiB) functionally graded materials through reaction sintering: synthesis, microstructure, and properties. Metall Mater Trans A. 34 (2002) 1993–2003.Google Scholar
  10. 10.
    Xiao XR, Hsiung CK, Zhao Z. Analysis and modeling of flexural deformation of laminated steel. Int. J. Mech. Sci. 50 (2008) 69–82.Google Scholar
  11. 11.
    Liu BX, Huang LJ, Geng L, Kaveendran B, Wang B, Song XQ, Cui XP. Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing. Mater. Sci. Eng. A. 595 (2014) 257–265.Google Scholar
  12. 12.
    Liu BX, Huang LJ, Geng L, Wang B. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing. Mater Sci Eng A. 583 (2013) 182–187.Google Scholar
  13. 13.
    Lu K. Making strong nanomaterials ductile with gradients. 345 (2014) 1455–1456.Google Scholar
  14. 14.
    Nambu S, Michiuchi M, Inoue J, Koseki T. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos Sci Technol. 69 (2009) 1936–1941.Google Scholar
  15. 15.
    Cepeda-Jimenez CM, Pozuelo M, Garcia-Infanta JM, Ruano OA, Carreno F. Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminum multilayer composites. Mat. Sci. Eng. A. 496 (2008) 133–142.Google Scholar
  16. 16.
    Liu BX, Huang LJ, Geng L, Wang B, Liu C, Zhang WC. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding. Journal of Alloy and Compounds. 602 (2014) 187–192.Google Scholar
  17. 17.
    Koo MY, Park JS, Park MK, Kim KT, Hong SH. Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4 V composites. Scripta Materialia. 66 (2012) 487–490.Google Scholar
  18. 18.
    Liu BX, Huang LJ, Geng L, Wang B, Cui XP. Effects of reinforcement volume fraction on tensile behaviors of laminated Ti-TiBw/Ti composites. Materials Science and Engineering A. 610 (2014) 344–349.Google Scholar
  19. 19.
    Kawai M, Morishita M, Tomura S, Takumida K. Inelastic behavior and strength of fiber-metal hybrid composite: glare. Int. J. Mech. Sci. 2–3 (1998) 183–198.Google Scholar
  20. 20.
    Panda KB, Ravichandran KS. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Materialia. 54 (2006) 1641–1657.Google Scholar
  21. 21.
    German RM. Sintering theory and practice. Wiley, New York, 1996.Google Scholar
  22. 22.
    Klassen RJ, Weatherly GC, Ramaswami B. Void nucleation in constrained silver interlayers. Metall. Mater. Trans. A. 23 (1992) 3281–3291.Google Scholar
  23. 23.
    Liu BX, Huang LJ, Rong XD, Geng L, Yin FX. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes. Composites Science and Technology. 126 (2016) 94–105.Google Scholar
  24. 24.
    Liu BX, Huang LJ, Geng L, Wang B, Cui XP. Fracture behaviors and microstructural failure mechanisms of laminated Ti-TiBw/Ti composites. Materials Science and Engineering A. 611 (2014) 290–297.Google Scholar
  25. 25.
    Yuan FP, Wu XL. Layer thickness dependent tensile deformation mechanisms in sub-10 nm multilayer nanowires. J. Appl. Phys. 111 (2012) 124313.Google Scholar
  26. 26.
    Kassner ME, Kennedy TC, Schrems KK. The mechanism of ductile fracture in constrained thin silver films. Acta Materialia. 46 (1998) 6445–6457.Google Scholar
  27. 27.
    Lee CS, Lee SB, Kin JS, Chang YW. Mechanical and microstructural analysis on the superplastic deformation behavior of Ti-6Al-4 V alloy. Int. J. Mech. Sci. 42 (2000) 1555–1569.Google Scholar
  28. 28.
    Gigli M, Manes A, Vigano F. Ductile fracture locus of Ti-6Al-4 V titanium alloy. Int. J. Mech. Sci. 54 (2012) 121–135.Google Scholar
  29. 29.
    Inoue J, Nambu S, Ishimoto Y, Koseki T. Fracture elongation of brittle/ductile multilayered steel composites with a strong interface. Scr. Mater. 59 (2008) 1055–1058.Google Scholar
  30. 30.
    Koseki T, Inoue J, Nambu S. Development of multilayers steels for improved combinations of high strength and high ductility. Mater. Trans. 55 (2014) 227–237.Google Scholar
  31. 31.
    Liu BX, Huang LJ, Wang B, Geng L. Effect of pure Ti thickness on the tensile behavior of laminated Ti-TiBw/Ti composites. Materials Science and Engineering A. 617 (2014) 115–120.Google Scholar
  32. 32.
    He MY, Huchinson JW. Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids. Structures. 25 (1989) 1053–1067.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Baoxi Liu
    • 1
  • Lujun Huang
    • 2
  • Xiping Cui
    • 2
  • Lin Geng
    • 2
  • Fuxing Yin
    • 1
  1. 1.School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling TechnologyResearch Institute for Energy Equipment Materials, Hebei University of TechnologyTianjinChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations