Numerical Analysis of Wall Deformation of PBFC Anti-seepage Slurry in Landfill

Conference paper

Abstract

This research is based on an anti-seepage project of landfill in Jiangsu province, China. Finite element method in ANSYS is used to investigate numerically the stress and strain of diaphragm wall in the landfill. The pulp ratio of diaphragm wall is determined by orthogonal experimental method. Results show that the maximum stress (absolute value) of the wall is only 0.24–0.38 MPa and no tensile stress is produced with the wall. The maximum horizontal displacement is in the bottom of the wall with the value about 0.19% of the height of the wall. The maximum vertical displacement is in the top of the wall with the value about 2.5% of the thickness of the wall. In addition, no plastic deformation occurs in the diaphragm wall and the deformation of wall is proportional to that of its surrounding soil, which meets the operational requirements of landfill.

Keywords

Landfills Diaphragm wall Stress 

Notes

Acknowledgments

The national natural science foundation of China (51678083) is gratefully acknowledged.

References

  1. 1.
    Li, S., Qin, Z.: The finite element analysis of the diaphragm wall’s deformation and stress of Lin Xi reservoir’s main dam. Yangtze River (19), 72–74 (2012)Google Scholar
  2. 2.
    Ma, X., Liang, G., Zheng, M., Xu, C., Mou, R.: The numerical analysis of concrete diaphragm wall with low elastic modulus in earth-rockfill dam. Hydroelectr. Power 5(4), 51–54 (2011)Google Scholar
  3. 3.
    Su, Y.: The analysis plastic concrete diaphragm wall effects on the stability of earth-rockfill dam. Shandong University (2013)Google Scholar
  4. 4.
    Ding, Y., Zhang, Q., Zhang, B.: The finite element analysis of diaphragm wall’s deformation and stress characteristics in high core wall of rockfill dam. J. Hydroelectr. Power 32(3), 162–167 (2013)Google Scholar
  5. 5.
    Wang, Y., Dai, G., Shi, G.: Numerical analysis of the deformation and stress of waste landfill’s diaphragm wall. J. Yangtze River Sci. Res. Inst. 37(4), 89–93 (2015)Google Scholar
  6. 6.
    Amadi, A.A., Eberemu, A.O.: Delineation of compaction criteria for acceptable hydraulic conductivity of lateritic soil-bentonite mixtures designed as landfill liners. Environ. Earth Sci. 67, 999–1006 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, R., Dou, T., Xiong, H., Feng, Y., Lu, Y.: The finite element analysis of diaphragm wall’s deformation and stress of Beijing, Daning reservoir dam. Water Resour. Hydropower Technol. 9(3), 46–49 (2010)Google Scholar
  8. 8.
    Chen, Y., Shi, W.: The research on influence of the bedrock fault rupture to core-wall rockfill dam. J. Rock Mech. Eng. 25(3), 578–583 (2006)Google Scholar
  9. 9.
    Evans, J.C., Asce, F., Ruffing, D.G., et al.: Design and construction of an experimental soil-bentonite cutoff wall. In: Geofrontiers (2017)Google Scholar
  10. 10.
    Abbaslou, H., Ghanizadeh, A.R., Amlashi, A.T.: The compatibility of bentonite/sepiolite plastic concrete cut-off wall material. Construct. Build. Mater. 124, 1165–1173 (2016)CrossRefGoogle Scholar
  11. 11.
    Guo, C., Wang, F.: Mechanism study on the construction of ultra-thin antiseepage wall by polymer injection. J. Mater. Civ. Eng. 24(9), 1183–1192 (2012)CrossRefGoogle Scholar
  12. 12.
    Asada, M., Ishikawa, A., Horiuchi, S.: Large-scale cutoff wall model test using ethanol bentonite slurry. J. Mater. Civ. Eng. 17(6), 719–724 (2005)CrossRefGoogle Scholar
  13. 13.
    Bryukhovetskiy, O.S., Borovkov, Y.A., Naydenko, I.Y.: Construction of anti-seepage curtains during jet mining. Gornyi Zhurnal (6), 44–47 (2017)Google Scholar
  14. 14.
    Amiri, S.A.G., Grimstad, G.: Constitutive model for long-term behavior of saturated frozen soil. In: Biot Conference on Poromechanics, pp. 1005–1012 (2017)Google Scholar
  15. 15.
    Isbuga, V., Regueiro, R.A.: Finite element analysis of finite strain micromorphic Drucker-Prager plasticity. Comput. Struct. 193, 31–43 (2017)CrossRefGoogle Scholar
  16. 16.
    Asada, M., Horiuchi, S.: High-Density bentonite slurry for seepage barriers. J. Mater. Civ. Eng. 17(2), 178–187 (2005)CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Hao, Z., Yang, Z.: The application of ANSYS in the numerical simulation of dam. Rock Soil Mech. 27(6), 965–972 (2006)Google Scholar
  18. 18.
    Nguyen, T.B., Lee, C., Choi, H.: Slug test analysis in vertical cutoff walls with consideration of filter cake. J. Geotech. Geoenviron. Eng. 137(8), 785–797 (2011)CrossRefGoogle Scholar
  19. 19.
    Chen, L., Zhu, J., He, S., Wu, X., Yin, J.: Effects of different constitutive models on the calculation of stress of diaphragm wall. J. Chongqing Univ. 36(10), 120–125 (2013)Google Scholar
  20. 20.
    Fiedler, J., Koudelka, T.: Plasticity calculation of plates using layered model. Appl. Mech. Mater. 825(2), 111–118 (2016)CrossRefGoogle Scholar
  21. 21.
    Beretta, E., Bonnetier, E., Francini, E., et al.: Small volume asymptotics for anisotropic elastic inclusions. Inverse Prob. Imaging 6(1), 1–23 (2017)Google Scholar
  22. 22.
    Liu, X., Zhang, F.: Study on the influence of tensile stress on the stress intensity factor of ANSYS. Shanxi Architecture (2016)Google Scholar
  23. 23.
    Shi, J., Luan, J.: Stability analysis method for composite failure through base liner and waste filling. Rock Soil Mech. 34(9), 2576–2582 (2013)Google Scholar
  24. 24.
    Hamdi, N., Srasra, E.: Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Manag. 33, 60–66 (2013)CrossRefGoogle Scholar
  25. 25.
    Qiu, G., Liang, L., Sun, H.: Slope stability of landfill under biodegradation. J. Northeastern Univ. (Nat. Sci.) 34(10), 1495–1498 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guozhong Dai
    • 1
  • Jia Zhu
    • 1
  • Guicai Shi
    • 1
  • Weicheng Shi
    • 1
  1. 1.School of Civil Engineering and ArchitectureChangzhou Institute of TechnologyChangzhouPeople’s Republic of China

Personalised recommendations