Induced Seismicity and Permeability Evolution in Gas Shales, CO2 Storage and Deep Geothermal Energy

  • Derek Elsworth
  • Kyunjae Im
  • Yi Fang
  • Takuya Ishibashi
  • Chaoyi Wang
Conference paper

Abstract

Contemporary methods of energy conversions that reduce carbon intensity include sequestering CO2, fuel switching to lower-carbon sources, such as from gas shales, and recovering deep geothermal energy via EGS. In all of these endeavors, either maintaining the low permeability and integrity of caprocks or in controlling the growth of permeability in initially very-low-permeability shales and geothermal reservoirs represent key desires. At short-timescales of relevance, permeability is driven principally by deformations – in turn resulting from changes in total stresses, fluid pressure or thermal and chemical effects. These deformations may be intrinsically stable or unstable, result in aseismic or seismic deformation, with resulting changes in permeability conditioned by the deformational mode. We report observations, experiments and models to represent the respective roles of mineralogy, texture, scale and overpressures on the evolution of friction, stability and permeability in fractured rocks – and their interrelationships. The physics of these observed behaviors are explored via parametric studies and surface measurement of fractures, showing that both permeability and frictional strength are correlated to the fracture asperity evolution that is controlled in-turn by the sliding velocity and fracture material.

Keywords

Induced seismicity Permeability evolution Shale gas CO2 sequestration EGS 

Notes

Acknowledgements

This work is the result of support provided by DOE Grant DE-FE0023354. This support is gratefully acknowledged.

References

  1. Abe, S., Mair, K.: Effects of gouge fragment shape on fault friction: New 3D modelling results. Geophys. Res. Lett. 36(23), 2–5 (2009).  https://doi.org/10.1029/2009GL040684CrossRefGoogle Scholar
  2. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011).  https://doi.org/10.1016/j.powtec.2010.09.030CrossRefGoogle Scholar
  3. Anderson, J.G., Wesnousky, S.G., Stirling, M.W.: Earthquake size as a function of fault slip rate. Bull. Seismol. Soc. Am. 86, 683–690 (1996)CrossRefGoogle Scholar
  4. Anderson, R.N., Zoback, M.D.: Permeability, underpressures, and convection in the oceanic crust near the Costa Rica Rift, eastern equatorial Pacific. J. Geophys. Res. 87(B4), 2860 (1982)CrossRefGoogle Scholar
  5. Bos, B., Spiers, C.J.: Frictional-viscous flow of phyllosilicate-bearing fault rock: microphysical model and implications for crustal strength profiles. J. Geophys. Res. 107(B2), 2028 (2002).  https://doi.org/10.1029/2001JB000301CrossRefGoogle Scholar
  6. Candela, T., Brodsky, E.E., Marone, C., Elsworth, D.: Flow rate dictates permeability enhancement during flow pressure oscillations in laboratory experiments. J. Geophys. Res. 120, 2037–2055 (2015).  https://doi.org/10.1002/2014JB011511CrossRefGoogle Scholar
  7. Carpenter, B.M., Marone, C., Saffer, D.M.: Frictional behavior of materials in the 3D SAFOD volume. Geophys. Res. Lett. 36(5), 1–5 (2009).  https://doi.org/10.1029/2008GL036660CrossRefGoogle Scholar
  8. Collettini, C., Niemeijer, A., Viti, C., Marone, C.: Fault zone fabric and fault weakness. Nature 462(7275), 907–910 (2009).  https://doi.org/10.1038/nature08585CrossRefGoogle Scholar
  9. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979).  https://doi.org/10.1680/geot.1979.29.1.47CrossRefGoogle Scholar
  10. Curtis, J.B.: Fractured shale-gas systems. AAPG Bull. 11(11), 1921–1938 (2002).  https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865DCrossRefGoogle Scholar
  11. Dieterich, J.H.: Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84(B5), 2161–2168 (1979).  https://doi.org/10.1029/JB084iB05p02161CrossRefGoogle Scholar
  12. Elkhoury, J.E., Brodsky, E.E., Agnew, D.C.: Seismic waves increase permeability. Nature 441, 1135–1138 (2006).  https://doi.org/10.1038/nature04798CrossRefGoogle Scholar
  13. Ellsworth, W.: Injection-Induced earthquakes. Science 341(6142), 142–149 (2013).  https://doi.org/10.1126/science.1225942CrossRefGoogle Scholar
  14. Elsworth, D., Goodman, R.E.: Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23(3), 233–243 (1986).  https://doi.org/10.1016/0148-9062(86)90969-1CrossRefGoogle Scholar
  15. Faoro, I., Niemeijer, A., Marone, C., Elsworth, D.: Influence of shear and deviatoric stress on the evolution of permeability in fractured rock. J. Geophys. Res. 114, B01201 (2009).  https://doi.org/10.1029/2007JB005372CrossRefGoogle Scholar
  16. Fang, Y., Elsworth, D., Wang, C., Ishibashi, T., Fitts, J.P.: Frictional stability-permeability relationships for fractures in shales. J. Geophy. Res. Solid Earth 122, 1760–1776 (2017).  https://doi.org/10.1002/2016JB013435CrossRefGoogle Scholar
  17. Ferdowsi, B., Griffa, M., Guyer, R.A., Johnson, P.A., Marone, C., Carmeliet, J.: Three-dimensional discrete element modeling of triggered slip in sheared granular media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89(4), 1–12 (2014).  https://doi.org/10.1103/physreve.89.042204CrossRefGoogle Scholar
  18. Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., Elsworth, D.: Seismicity triggered by fluid injection – induced aseismic slip. Science 348(6240), 1224–1227 (2015).  https://doi.org/10.1126/science.aab0476CrossRefGoogle Scholar
  19. Guo, Y., Morgan, J.K.: Influence of normal stress and grain shape on granular friction: results of discrete element simulations. J. Geophys. Res. B Solid Earth 109(12), 1–16 (2004).  https://doi.org/10.1029/2004JB003044CrossRefGoogle Scholar
  20. Ikari, M.J., Niemeijer, A.R., Marone, C.: The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J. Geophys. Res. Solid Earth 116(8), 1–25 (2011).  https://doi.org/10.1029/2011JB008264CrossRefGoogle Scholar
  21. Im, K., Elsworth, D., Guglielmi, Y., Mattioli, G.: Geodetic imaging of thermal deformation in geothermal reservoirs - production, depletion and fault reactivation. J. Volcanol. Geoth. Res. 338, 79–91 (2017).  https://doi.org/10.1016/j.jvolgeores.2017.03.021CrossRefGoogle Scholar
  22. Ishibashi, T., Asanuma, H., Fang, Y., Wang, C., Elsworth, D.: Exploring the link between permeability and strength evolution during fracture shearing. In: Proceedings of the 50th US Rock Mechanics/Geomechanics Symposium, Houston, Texas (2016)Google Scholar
  23. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998).  https://doi.org/10.1061/(asce)0733-9399(1998)124:3(285)CrossRefGoogle Scholar
  24. Jiang, M., Shen, Z., Wang, J.: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput. Geotech. 65, 147–163 (2015).  https://doi.org/10.1016/j.compgeo.2014.12.011CrossRefGoogle Scholar
  25. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).  https://doi.org/10.1146/annurev.earth.26.1.643CrossRefGoogle Scholar
  26. Mair, K., Marone, C.: Friction of simulated fault gouge for a wide range of velocities and normal stresses. J. Geophys. Res. 104(B12), 28899–28914 (1999)CrossRefGoogle Scholar
  27. Majer, E.L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., Asanuma, H.: Induced seismicity associated with Enhanced Geothermal Systems. Geothermics 36(3), 185–222 (2007).  https://doi.org/10.1016/j.geothermics.2007.03.003CrossRefGoogle Scholar
  28. Major, J.R., Eichhubl, P., Dewers, T.A., Urquhart, A.S., Olson, J.E., Holder, J.: The effect of CO2-related diagenesis on geomechanical failure parameters: fracture testing of CO2-altered reservoir and seal rocks from a natural analog at Crystal Geyser, Utah. ARMA 14-7463 (2014)Google Scholar
  29. McGarr, A., Simpson, D., Seeber, L.: Case histories of induced and triggered seismicity. Int. Geophys. 81, 647–661 (2002).  https://doi.org/10.1016/S0074-6142(02)80243-1CrossRefGoogle Scholar
  30. Moore, D.E., Lockner, D.A.: Frictional strengths of talc-serpentine and talc-quartz mixtures. J. Geophys. Res. Solid Earth 116(B01403), 1–17 (2011).  https://doi.org/10.1029/2010JB007881CrossRefGoogle Scholar
  31. Moore, D.E., Rymer, M.J.: Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448(7155), 795–797 (2007).  https://doi.org/10.1038/nature06064CrossRefGoogle Scholar
  32. Niemeijer, A., Marone, C., Elsworth, D.: Fabric induced weakness of tectonic faults. Geophys. Res. Lett. 37(3), 1–5 (2010).  https://doi.org/10.1029/2009GL041689CrossRefGoogle Scholar
  33. Niemeijer, A.R., Spiers, C.J.: Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics 427(1–4), 231–253 (2006).  https://doi.org/10.1016/j.tecto.2006.03.048CrossRefGoogle Scholar
  34. Peng, Z., Gomberg, J.: An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3(9), 599–607 (2010).  https://doi.org/10.1038/ngeo940CrossRefGoogle Scholar
  35. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8 Spec. Iss.), 1329–1364 (2004).  https://doi.org/10.1016/j.ijrmms.2004.09.011CrossRefGoogle Scholar
  36. Rathbun, A.P., Renard, F., Abe, S.: Numerical investigation of the interplay between wall geometry and friction in granular fault gouge. J. Geophys. Res. Solid Earth 118(3), 878–896 (2013).  https://doi.org/10.1002/jgrb.50106CrossRefGoogle Scholar
  37. Ruina, A.: Slip instability and state variable friction law. J. Geophys. Res. (1983).  https://doi.org/10.1029/JB088iB12p10359CrossRefGoogle Scholar
  38. Samuelson, J., Elsworth, D., Marone, C.: Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J. Geophys. Res. 114, B12404 (2009).  https://doi.org/10.1029/2008JB006273CrossRefGoogle Scholar
  39. Schmidt, D.A., Bürgmann, R., Nadeau, R.M., D’Alessio, M.: Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data. J. Geophys. Res. B Solid Earth 110(B08406), 1–15 (2005).  https://doi.org/10.1029/2004JB003397CrossRefGoogle Scholar
  40. Scholz, C.H.: Earthquakes and friction laws. Nature 391(6662), 37–42 (1998).  https://doi.org/10.1038/34097CrossRefGoogle Scholar
  41. Tsang, Y.W., Witherspoon, P.A.: Hydromechanical behavior of a deformable rock fracture subject to normal stress. J. Geophys. Res. 86(B10), 9287–9298 (1981).  https://doi.org/10.1029/JB086iB10p09287CrossRefGoogle Scholar
  42. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016–1024 (1980).  https://doi.org/10.1029/WR016i006p01016CrossRefGoogle Scholar
  43. Walsh, F.R., Zoback, M.D.: Oklahoma’s recent earthquakes and saltwater disposal. Sci. Adv. 1–9 (2015).  https://doi.org/10.1126/sciadv.1500195
  44. Wang, C., Elsworth, D.: Numerical investigation of the effect of frictionally weak minerals on shears strength of faults. ARMA 16-576 (2016)Google Scholar
  45. Wang, C., Elsworth, D., Fang, Y.: Influence of weakening minerals on ensemble strength and slip stability of faults. J. Geophys. Res. Solid Earth 122, 7090–7110 (2017).  https://doi.org/10.1002/2016JB013687CrossRefGoogle Scholar
  46. Wang, W., Scholz, C.: Micromechanics of the velocity and normal stress dependence of rock friction. Pure. appl. Geophys. 143, 303 (1994).  https://doi.org/10.1007/BF00874333CrossRefGoogle Scholar
  47. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012).  https://doi.org/10.1016/j.powtec.2011.10.057CrossRefGoogle Scholar
  48. Xue, L., Li, H.-B., Brodsky, E.E., Xu, Z.-Q., Kano, Y., Wang, H., Mori, J.J., Si, J.-L., Pei, J.-L., Zhang, W., Yang, G., Sun, Z.-M., Huang, Y.: Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 340, 1555 (2013).  https://doi.org/10.1126/science.1237237CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Derek Elsworth
    • 1
  • Kyunjae Im
    • 1
  • Yi Fang
    • 1
    • 2
  • Takuya Ishibashi
    • 1
    • 3
  • Chaoyi Wang
    • 1
  1. 1.Energy and Mineral Engineering, G3 Center, EMS Energy InstitutePennsylvania State UniversityUniversity ParkUSA
  2. 2.Institute for GeophysicsThe University of Texas at AustinAustinUSA
  3. 3.Fukushima Renewable Energy Institute, National Institute for Advanced Industrial Science and TechnologyKoriyamaJapan

Personalised recommendations