Skip to main content

A Data Mining-Based Framework for Multi-item Markdown Optimization

  • Chapter
  • First Online:

Part of the book series: Springer Series in Fashion Business ((SSFB))

Abstract

Markdown decisions in retailing are made based on the demand forecasts which may or may not be accurate in the first place. In this chapter, we propose a framework for forecasting weekly demands of retail items via linear regression models within multi-item groups that incorporate both positive and negative item associations. We then utilize dynamic pricing models to optimize markdown decisions based on the forecasts within multi-item groups. Grouping items can be considered as a form of variable selection to prevent the overfitting in prediction models. We report regression results from multi-item groupings besides results from single-item regression model on a real-world dataset provided by an apparel retailer. We then report markdown optimization results for the single items and multi-item groupings that multi-item forecasting models are built upon. The results show that the regression models provide better estimates within multi-item groups compared to the single-item model. Moreover, the overall revenues achieved in multi-item markdown optimization across all grouping schemes are higher than the total revenue yielded by single-item markdown optimization scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://developer.ibm.com/academic/.

References

  • Basu S, Davidson I, Wagstaff KL (eds) (2008) Constrained clustering: advances in algorithms, theory, and applications. Chapman and Hall/CRC

    Google Scholar 

  • Bradley PS, Mangasarian OL, Street WN (1997) Clustering via concave minimization. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems. MIT Press, Cambridge, MA, pp 368–374. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.Z

  • Bunn DW, Vassilopoulos AI (1999) Comparison of seasonal estimation methods in multi-item short-term forecasting. Int J Forecast 15(4):431–443

    Article  Google Scholar 

  • Cosgun O, Kula U, Kahraman C (2013) Markdown optimization via approximate dynamic programming. Int J Comput Intell Syst 6(1):64–78

    Article  Google Scholar 

  • de Menezes LM, Bunn DW, Taylor JW (2000) Review of guidelines for the use of combined forecasts. Eur J Oper Res 120(1):190–204

    Article  Google Scholar 

  • Dekimpe MG, Hanssens DM (2000) Time-series models in marketing: past, present and future. Int J Res Mark 17:183–193

    Article  Google Scholar 

  • Dekker M, van Donselaar K, Ouwehand P (2004) How to use aggregation and combined forecasting to improve seasonal demand forecasts. Int J Prod Econ 90:151–167

    Article  Google Scholar 

  • Demiriz A (2015) Using pairwise associations for multi-item markdown optimisation. Int J Syst Sci Oper Logist 1–14. https://doi.org/10.1080/23302674.2015.1094835

  • Demiriz A, Cihan A, Kula U (2009) Analyzing price data to determine positive and negative product associations. In: Leung C, Lee M, Chan J (eds) Neural information processing. LNCS, vol 5863. Springer, pp 846–855

    Chapter  Google Scholar 

  • Demiriz A, Ertek G, Atan T, Kula U (2011) Re-mining item associations: methodology and a case study in apparel retailing. Decis Support Syst 52(1):284–293

    Article  Google Scholar 

  • Demiriz A, Ekizoglu B, Kula U (2010a) Clustering products under pairwise positive and negative association constraints in retailing. In: Proceedings of ANNIE 2010, St. Louis, MO, USA, November, 2010

    Google Scholar 

  • Demiriz A, Ertek G, Atan T, Kula U (2010b) Re-mining positive and negative association mining results. In: Perner P (ed) Advances in data mining. applications and theoretical aspects, vol 6171 of LNCS. Springer, pp 101–114

    Chapter  Google Scholar 

  • Demiriz A, Bennett KP, Bradley PS (2018) Using assignment constraints to avoid empty clusters in k-means clustering. In: Basu et al (eds) [1], pp 203–222

    Google Scholar 

  • Fisher M, Gallino S, Li J (2015) Competition-based dynamic pricing in online retailing: a methodology validated with field experiments. Technical report, Ross School of Business, University of Michigan, January 2015

    Google Scholar 

  • Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181

    Article  Google Scholar 

  • Gardner ES Jr (2006) Exponential smoothing: the state of the art-Part II. Int J Forecast 22(4):637–666

    Article  Google Scholar 

  • Gilpin S, Davidson I (2011) Incorporating sat solvers into hierarchical clustering algorithms: an efficient and flexible approach. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11, New York, NY, USA, 2011. ACM, pp 1136–1144

    Google Scholar 

  • Granger CWJ, Ramanathan R (1984) Improved methods of combining forecasts. J Forecast 3(2):197–204

    Article  Google Scholar 

  • Gür-Ali Ö, Sayın S, van Woensel T, Fransoo J (2009) SKU demand forecasting in the presence of promotions. Expert Syst Appl 36(10):12340–12348

    Article  Google Scholar 

  • Gürhan Kök A, Fisher ML (2007) Demand estimation and assortment optimization under substitution: methodology and application. Oper Res 55(6):1001–1021

    Article  Google Scholar 

  • Hasan M, Salem S, Zaki M (2011) SimClus: an effective algorithm for clustering with a lower bound on similarity. Knowl Inf Syst 28:665–685. https://doi.org/10.1007/s10115-010-0360-6

    Article  Google Scholar 

  • Johnson K, Lee BHA, Simchi-Levi D (2014) Analytics for an online retailer: demand forecasting and price optimization. Technical report, MIT

    Google Scholar 

  • Kumar M, Patel N (2010) Using clustering to improve sales forecasts in retail merchandising. Ann Oper Res 174:33–46. https://doi.org/10.1007/s10479-008-0417-z

    Article  Google Scholar 

  • Lange T, Law MH, Jain AK, Buhmann JM (2018) Clustering with constraints: a mean-field approximation perspective. In: Basu et al (eds) [1], pp 91–122

    Google Scholar 

  • Lu Z, Leen TK (2018) Pairwise constraints as priors in probabilistic clustering. In: Basu et al (eds) [1], pp 59–90

    Chapter  Google Scholar 

  • Nijs VR, Dekimpe MG, Steenkamp J-BEM, Hanssens DM (2001) The category-demand effects of price promotions. Mark Sci 20(1):1–22

    Article  Google Scholar 

  • Pensa RG, Robardet C, Boulicaut JF (2018) Constraint-driven co-clustering of 0/1 data. In Basu et al. [1], pp 123–148

    Google Scholar 

  • Shocker AD, Bayus BL, Namwoon K (2004) Product complements and substitutes in the real world: the relevance of "other products". J Mark 68:28–40

    Article  Google Scholar 

  • Shy O (2008) How to price: a guide to pricing techniques and yield management. Cambridge University Press

    Google Scholar 

  • Sung NH, Lee JK (2000) Knowledge assisted dynamic pricing for large-scale retailers. Decis Support Syst 28(4):347–363

    Article  Google Scholar 

  • Talluri KT, Van Ryzin G (2004) The theory and practice of revenue management. Springer, International Series in Operations Research & Management Science

    Book  Google Scholar 

  • Tan P-N, Kumar V, Kuno H (2001) Using SAS for mining indirect associations in data. In: Western Users of SAS software conference

    Google Scholar 

  • Thomassey S, Fiordaliso A (2006) A hybrid sales forecasting system based on clustering and decision trees. Decis Support Syst 42(1):408–421

    Article  Google Scholar 

  • Vindevogel B, den Poel Van D, Wets G (2005) Why promotion strategies based on market basket analysis do not work. Expert Syst Appl 28(3):583–590

    Article  Google Scholar 

  • Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou Z-H, Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14:1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  • Xie J, Zeng L (2010) Group variable selection methods and their applications in analysis of genomic data. In: Feng J, Fu W, Sun F (eds) Frontiers in computational and systems biology, vol 15. Computational biology. Springer, London, pp 231–248

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Demiriz .

Editor information

Editors and Affiliations

Appendices

Appendix

Multi-item Markdown Optimization Model

The parameters of the model are given below:  

n :

number of products

\(n_l\) :

number of products in cluster l

T :

number of weeks in the season

\(T_l\) :

planning horizon (weeks) for cluster l

\(\varepsilon \) :

very small price value (such as 1 cent), which will allow to differentiate between two prices

\({\textit{IS}}_i\) :

initial inventory for product i (at the beginning of the season)

\({\textit{IP}}_i\) :

initial price of product i (at the beginning of the season)

\(\beta _{0}^{i}, \ldots , \beta _{n_l}^{i}\) :

coefficients for the products in cluster l that represent how they contribute to the sales of product i

\(h_{it}\) :

unit cost of holding product i in inventory during week t

\({\textit{sV}}_i\) :

salvage value/price of product i (can be fixed as parameters, if desired)

\({\textit{lMS}}\) :

maximum number of markdowns throughout a season (optional, fixed by the retail managers)

M :

a large number

 

The variables of the model are given below:

 

\(p_{it}\) :

price of product i during week t

\(B_{it}\) :

binary variable that indicates whether a markdown is applied to product i in week t (1 if markdown was applied)

\(r_{it}\) :

binary variable that indicates whether the demand forecast for product i in week t is positive (1 if demand forecast is positive)

\({\textit{wFD}}_{it}\) :

demand forecast for product i for week t (even though this can be a general function of \(p_{it}\) and time, constraint (1) models the special case where it is a linear function of \(p_{it}\))

\(D_{it}\) :

positive demand forecast for product i for week t

\(S_{it}\) :

sales of product i in week t

\({\textit{fS}}_i\) :

number of units of product i left in inventory at the end of the season

\({\textit{TS}}_i\) :

total sales of product i throughout the season

\({\textit{wIS}}_{it}\) :

initial inventory of product i in week t

\({\textit{wFS}}_{it}\) :

ending inventory of product i in week t

\({\textit{hC}}_{it}\) :

total cost of inventory for product i during week t

\({\textit{THC}}_{i}\) :

total cost of inventory for product i throughout the season

\({\textit{nMS}}_{i}\) :

number of markdowns applied for product i

 

$$\begin{array}{l} {\mathop {\max } \displaystyle \sum _{i=1}^{n_l} \displaystyle \sum _{t=1}^{T_l}p_{it} S_{it} +\displaystyle \sum _{i=1}^{n_l}sV_{i} {{\textit{fS}}}_{i} - \displaystyle \sum _{i=1}^{n_l}\sum _{t=1}^{T_l}h_{it} {{\textit{wFS}}}_{it} } \\ {s.t.} \end{array} $$
$$\begin{aligned} {\textit{wFD}}_{it}= & {} \beta _{0}^{i} + \displaystyle \sum _{j=1}^{n_l}\beta _{j}^{i} p_{jt} +\beta _{n_l+1}^{i} t ~~~\forall i \end{aligned}$$
(6)
$$\begin{aligned} {\textit{wFS}}_{it}= & {} {\textit{wIS}}_{it} -S_{it} ~~~ \forall i,\forall t \end{aligned}$$
(7)
$$\begin{aligned} {\textit{wIS}}_{i1}= & {} {\textit{IS}}_{i} ~~~ \forall i \end{aligned}$$
(8)
$$\begin{aligned} {\textit{TS}}_{i}= & {} \sum _{t=1}^{T_l} S_{it} ~~~ \forall i \end{aligned}$$
(9)
$$\begin{aligned} {\textit{fS}}_{i}= & {} {\textit{IS}}_{i} - {\textit{TS}}_{i} ~~~ \forall i \end{aligned}$$
(10)
$$\begin{aligned} {\textit{wIS}}_{it+1}= & {} {\textit{wIS}}_{it} - S_{it} ~~~ \forall i,\forall t \end{aligned}$$
(11)
$$\begin{aligned} D_{it}\le & {} M r_{it} ~~~\forall i,\forall t \end{aligned}$$
(12)
$$\begin{aligned} D_{it} - {\textit{wFD}}_{it}\le & {} M \left( 1-r_{it} \right) ~~~\forall i,\forall t \end{aligned}$$
(13)
$$\begin{aligned} S_{it}\le & {} D_{it} ~~~ \forall i,\forall t \end{aligned}$$
(14)
$$\begin{aligned} {\textit{wIS}}_{it}\ge & {} S_{it} ~~~ \forall i,\forall t \end{aligned}$$
(15)
$$\begin{aligned} p_{it+1}\le & {} p_{it} \quad ~~~\forall i,\forall t \end{aligned}$$
(16)
$$\begin{aligned} p_{iT}\ge & {} {\textit{sV}}_{i} \quad ~~~\forall i \end{aligned}$$
(17)
$$\begin{aligned} p_{i1}\le & {} {\textit{IP}}_{i} \quad ~~~\forall i \end{aligned}$$
(18)
$$\begin{aligned} p_{it+1} -p_{it} +\varepsilon\le & {} M (1-B_{it+1} )~~~ \forall i,\forall t \end{aligned}$$
(19)
$$\begin{aligned} p_{i1} - {\textit{IP}}_{i} +\varepsilon\le & {} M (1-B_{i1} ) ~~~ \forall i \end{aligned}$$
(20)
$$\begin{aligned} p_{it+1} -p_{it} + M B_{it+1}\ge & {} 0~~~ \forall i,\forall t \end{aligned}$$
(21)
$$\begin{aligned} p_{i1} - {\textit{IP}}_{i} + M B_{i1}\ge & {} 0~~~ \forall i \end{aligned}$$
(22)
$$\begin{aligned} {\textit{nMS}}_{i}= & {} \sum _{t=1}^{T_l} B_{it} ~~~ \forall i \end{aligned}$$
(23)
$$\begin{aligned} {\textit{nMS}}_{i}\le & {} {\textit{lMS}}~~~ \forall i \end{aligned}$$
(24)
$$\begin{aligned} {\textit{hC}}_{it}= & {} h_{it} {\textit{wFS}}_{it} ~~~ \forall i,\forall t \end{aligned}$$
(25)
$$\begin{aligned} {\textit{THC}}_{i}= & {} \sum _{t=1}^{T_l} {\textit{hC}}_{it} ~~~ \forall i \end{aligned}$$
(26)
$$\begin{aligned} p_{it}\ge & {} 0, B_{it} \in \{ 0,1\} , r_{it} \in \{ 0,1\} \quad \quad \forall i,\forall t \\ sV_{i}\ge & {} 0,fS_{i} \ge 0, {\textit{TS}}_{i} \ge 0, {\textit{THC}}_{i} \ge 0\quad \quad \forall i \\ D_{it}\ge & {} 0, {\textit{hC}}_{it} \ge 0, {\textit{wFD}}_{it} ~~ \mathrm{unbounded} ~~~ \forall i,\forall t \\ S_{it}\ge & {} 0, {\textit{wFS}}_{it} \ge 0, {\textit{wIS}}_{it} \ge 0\quad \quad \forall i,\forall t \\ {\textit{nMS}}_{i}\ge & {} 0~~~ {\text {and integer}} \quad \quad \forall i \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demiriz, A. (2018). A Data Mining-Based Framework for Multi-item Markdown Optimization. In: Thomassey, S., Zeng, X. (eds) Artificial Intelligence for Fashion Industry in the Big Data Era. Springer Series in Fashion Business. Springer, Singapore. https://doi.org/10.1007/978-981-13-0080-6_4

Download citation

Publish with us

Policies and ethics