Garment Wearing Comfort Analysis Using Data Mining Technology

Chapter
Part of the Springer Series in Fashion Business book series (SSFB)

Abstract

Clothing pressure is an important factor that influences wear comfort. It can reflect wear comfort intuitively. With the development of virtual-reality technology, the numerical clothing pressures were widely applied in the evaluations of garment wear comfort. Compared with traditional measuring methods of garment pressure, the virtual clothing pressure-measuring method has the advantages of lower cost, time saving, efficiency improving, easy accessibility, and higher accuracy. In this article, sixty human’s postures in daily life were designed using CLO 3D Modelist. Next, the numerical clothing pressure data were collected, respectively, under the sixty postures in a virtual environment. Finally, factor analysis was applied to process the data. The result shows that the pants’ pressure wear comfort is mainly influenced by four factors; there are thigh–hip factor, shank factor, waist factor, and crotch factor. The share of these four factors’ influence accounts for about 82.0%, and the thigh–hip factor takes up the biggest share and reaches to 44.5%.

Keywords

Numerical clothing pressure Wearing comfort Virtual-reality Factor analysis 

Notes

Acknowledgements

This paper was financially supported by China National Endowment for the Arts.

References

  1. Barker RL (2002) From fabric hand to thermal comfort: the evolving role of objective measurements in explaining human comfort response to textiles. Int J Cloth Sci Technol 14(3/4):181–200.  https://doi.org/10.1108/09556220210437158CrossRefGoogle Scholar
  2. Bragança S, Fontes L, Arezes P, Edelman ER, Carvalho M (2015) The impact of work clothing design on workers’ comfort. Procedia Manuf 3:5889–5896.  https://doi.org/10.1016/j.promfg.2015.07.898CrossRefGoogle Scholar
  3. Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12(1):43–47.  https://doi.org/10.1207/s15327906mbr1201_3CrossRefGoogle Scholar
  4. Chen Y, zeng X, Happiette M, Bruniaux P, Ng R, Yu W (2006) Estimation of ease allowance of a garment using fuzzy logic. In: Fuzzy applications in industrial engineering. Springer, pp 367–379.  https://doi.org/10.1007/3-540-33517-x_15
  5. Chen Y, Zeng X, Happiette M, Bruniaux P, Ng R, Yu W (2008) A new method of ease allowance generation for personalization of garment design. Int J Cloth Sci Technol 20(3):161–173.  https://doi.org/10.1108/09556220810865210CrossRefGoogle Scholar
  6. Comrey AL, Lee HB (2013) A first course in factor analysis. Psychology Press, Hlilsdale, NJGoogle Scholar
  7. Dan R, X-r Fan, Shi Z, Zhang M (2016) Finite element simulation of pressure, displacement, and area shrinkage mass of lower leg with time for the top part of men’s socks. J Text Inst 107(1):72–80.  https://doi.org/10.1080/00405000.2015.1007621CrossRefGoogle Scholar
  8. Dongsheng C, Qing Z (2003) A study on clothing pressure for men’s suit comfort evaluation. Int J Cloth Sci Technol 15(5):320–334.  https://doi.org/10.1108/09556220310492598CrossRefGoogle Scholar
  9. Dziuban CD, Shirkey EC (1974) When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol Bull 81(6):358.  https://doi.org/10.1037/h0036316CrossRefGoogle Scholar
  10. Fan J, Chan AP (2005) Prediction of girdle’s pressure on human body from the pressure measurement on a dummy. Int J Cloth Sci Technol 17(1):6–12.  https://doi.org/10.1108/09556220510577925CrossRefGoogle Scholar
  11. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and techniques, 3rd edn. Morgan Kaufmann Publishers, Waltham, MAGoogle Scholar
  12. Hollies NR, Custer AG, Morin CJ, Howard ME (1979) A human perception analysis approach to clothing comfort. Text Res J 49(10):557–564.  https://doi.org/10.1177/004051757904901001CrossRefGoogle Scholar
  13. Huang M-S, Tsai H-C, Huang T-H (2011) Applying Kansei engineering to industrial machinery trade show booth design. Int J Ind Ergon 41(1):72–78.  https://doi.org/10.1016/j.ergon.2010.10.002CrossRefGoogle Scholar
  14. Jeong Y, Hong K, Kim S-J (2006) 3D pattern construction and its application to tight-fitting garments for comfortable pressure sensation. Fiber Polym 7(2):195–202.  https://doi.org/10.1007/BF02908267CrossRefGoogle Scholar
  15. Kaiser HF (1970) A second generation little jiffy. Psychometrika 35(4):401–415.  https://doi.org/10.1007/BF02291817CrossRefGoogle Scholar
  16. Kaiser HF, Rice J (1974) Little Jiffy, Mark IV. Educ Psychol Meas 34(1):111–117.  https://doi.org/10.1177/001316447403400115CrossRefGoogle Scholar
  17. Kamalha E, Zeng Y, Mwasiagi JI, Kyatuheire S (2013) The comfort dimension; a review of perception in clothing. J Sens Stud 28(6):423–444.  https://doi.org/10.1111/joss.12070CrossRefGoogle Scholar
  18. Kilinc-Balci F (2011) How consumers perceive comfort in apparel. In: Song G (ed) Improving comfort in clothing, 1st edn. Woodhead Publishing, Cambridge, UK, pp 97–113CrossRefGoogle Scholar
  19. Liu Y, Chen D (2015) An analysis on EEG power spectrum under pressure of girdle. Int J Cloth Sci Technol 27(4):495–505.  https://doi.org/10.1108/IJCST-05-2014-0065CrossRefGoogle Scholar
  20. Liu H, Chen D, Wei Q, Pan R (2013) An investigation into the bust girth range of pressure comfort garment based on elastic sports vest. J Text Inst 104(2):223–230.  https://doi.org/10.1080/00405000.2012.714940CrossRefGoogle Scholar
  21. Morooka H, Fukuda R, Nakahashi M, Morooka H, Sasaki H (2005) Clothing pressure and wear feeling at under-bust part on a push-up type brassiere. Sen-I Gakkaishi 61(2):53–58CrossRefGoogle Scholar
  22. Thomassey S, Bruniaux P (2013) A template of ease allowance for garments based on a 3D reverse methodology. Int J Ind Ergon 43(5):406–416.  https://doi.org/10.1016/j.ergon.2013.08.002CrossRefGoogle Scholar
  23. Tsujisaka T, Azuma Y, Matsumoto Y-I, Morooka H (2004) Comfort pressure of the top part of men’s socks. Text Res J 74(7):598–602.  https://doi.org/10.1177/004051750407400707CrossRefGoogle Scholar
  24. Wong ASW, Li Y, Zhang X (2004) Influence of fabric mechanical property on clothing dynamic pressure distribution and pressure comfort on tight-fit sportswear. Sen-I Gakkaishi 60(10):293–299.  https://doi.org/10.2115/fiber.60.293CrossRefGoogle Scholar
  25. You F, Wang JM, Luo XN, Li Y, Zhang X (2002a) Garment’s pressure sensation (1): subjective assessment and predictability for the sensation. Int J Cloth Sci Technol 14(5):307–316.  https://doi.org/10.1108/09556220210446121CrossRefGoogle Scholar
  26. You F, Wang JM, Luo XN, Li Y, Zhang X (2002b) Garments pressure sensation (2): the psychophysical mechanism for the sensation. Int J Cloth Sci Technol 14(5):317–327.  https://doi.org/10.1108/09556220210446248CrossRefGoogle Scholar
  27. Zeng X, Koehl L (2003) Representation of the subjective evaluation of the fabric hand using fuzzy techniques. Int J Intell Syst 18(3):355–366.  https://doi.org/10.1002/int.10092CrossRefGoogle Scholar
  28. Zeng X, Ding Y, Koehl L (2004) A 2-tuple fuzzy linguistic model for sensory fabric hand evaluation. In: Ruan D, Zeng X (eds) Intelligent sensory evaluation. Springer, Berlin, Heidelberg, pp 217–234.  https://doi.org/10.1007/978-3-662-07950-8_12CrossRefGoogle Scholar
  29. Zeng X, Ruan D, Koehl L (2008) Intelligent sensory evaluation: concepts, implementations, and applications. Math Comput Simulat 77(5–6):443–452.  https://doi.org/10.1016/j.matcom.2007.11.013CrossRefGoogle Scholar
  30. Zhang X, Yeung K, Li Y (2002) Numerical simulation of 3D dynamic garment pressure. Text Res J 72(3):245–252.  https://doi.org/10.1177/004051750207200311CrossRefGoogle Scholar
  31. Zhang M, Dong H, Fan X, Dan R (2015) Finite element simulation on clothing pressure and body deformation of the top part of men’s socks using curve fitting equations. Int J Cloth Sci Technol 27(2):207–220.  https://doi.org/10.1108/IJCST-12-2013-0139CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Apparel and Art Design College, Xi’an Polytechnic UniversityXi’anChina
  2. 2.University of Lille 1, Nord de FranceLilleFrance
  3. 3.GEMTEX LaboratoryENSAITRoubaixFrance

Personalised recommendations