Skip to main content

Receptivity and Instability

  • Chapter
  • First Online:
DNS of Wall-Bounded Turbulent Flows

Abstract

In this chapter, linear stability and receptivity analysis of the zero-pressure gradient (ZPG) boundary layer, under the parallel flow assumption, is discussed. This assumption implies that the equilibrium flow quantities do not grow in the streamwise direction and requires solving the Orr-Sommerfeld equation (OSE) to study evolution of disturbance field in a linearized analysis. The concept of the spatio-temporal wave-front (STWF) originates from the receptivity analysis with the OSE solved for the response field. First, the simplified description of equilibrium flow in terms of a similarity solution for ZPG boundary layer is presented. Following which the OSE is derived for boundary layers, making use of the parallel flow approximation (Drazin and Reid, Hydrodynamic stability, Cambridge University Press, UK, 1981, [19], Sengupta, Instabilities of flows and transition to turbulence, CRC Press, Taylor & Francis Group, Florida, USA, 2012, [53]). This equation have been solved for the ZPG boundary layer using analytical approaches in Heisenberg (Annalen der Physik Leipzig, 379:577–627, 1924, [28]), Schlichting (Nach Gesell d Wiss z G\(\ddot{\mathrm{o}}\)tt., MPK 42:181–208, 1933, [48]), Tollmien (NACA TM 609, 1931, [71]). We instead introduce the compound matrix method, a robust method for stiff differential equation useful for the OSE. Finally, the receptivity analysis of the ZPG boundary layer flow is provided, with results taken from Sengupta et al. (Phys Rev Lett, 96(22):224504, 2006, [61]), Sengupta et al. (Phys Fluids, 18:094101, 2006, [62]). The unique feature of the materials in this chapter is the topic of instability of mixed convection flows for which two theorems are enunciated for an inviscid linear mechanism, based on materials extensively taken from Sengupta et al., Physics of Fluids, 25, 094102 (2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [Reproduced from Direct numerical simulation of transitional mixed convection flows: Viscous and inviscid instability mechanism. Sengupta et al., Physics of Fluids, 25, 094102 (2013), with the permission of AIP Publishing.]

References

  1. Allen, L., & Bridges, T. J. (2002). Numerical exterior algebra and the compound matrix method. Numerische Mathematik, 92, 197–232.

    Article  MathSciNet  Google Scholar 

  2. Alizard, F., & Robinet, J. (2007). Spatially convective global modes in a boundary layer. Physics of Fluids, 19, 114105.

    Article  Google Scholar 

  3. Arfken, G. (1985). Mathematical methods for physicists (3rd ed.). Orlando: Academic Press.

    Chapter  Google Scholar 

  4. Barkley, D., Gomes, M. G. M., & Henderson, R. D. (2002). Three-dimensional instability in flow over a backward-facing step. Journal of Fluid Mechanics, 473, 167–190.

    Article  MathSciNet  Google Scholar 

  5. Barkley, D., Blackburn, H. M., & Sherwin, S. J. (2008). Direct optimal growth analysis for timesteppers. International Journal for Numerical Methods in Fluids, 57, 1435–1458.

    Article  MathSciNet  Google Scholar 

  6. Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw Hill Book Co., International Edition.

    Google Scholar 

  7. Bhaumik, S. (2013). Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph. D. thesis, I. I. T. Kanpur

    Google Scholar 

  8. Bhumkar, Y. G. (2011). High performance computing of bypass transition. Ph.D. thesis, I. I. T. Kanpur

    Google Scholar 

  9. Bhaumik, S., & Sengupta, T. K. (2014). Precursor of transition to turbulence: Spatiotemporal wave front. Physical Review E, 89(4), 043018.

    Article  Google Scholar 

  10. Bhaumik, S., & Sengupta, T. K. (2017). Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami and transition to turbulence. Physics of Fluids, 29, 124103.

    Article  Google Scholar 

  11. Blackburn, H. M., Barkley, D., & Sherwin, S. J. (2008). Convective instability and transient growth in flow over a backward-facing step. Journal of Fluid Mechanics, 603, 271–304.

    Article  MathSciNet  Google Scholar 

  12. Brandt, L., & Henningson, D. S. (2002). Transition of streamwise streaks in zero-pressure-gradient boundary layers. Journal of Fluid Mechanics, 472, 229–261.

    Article  MathSciNet  Google Scholar 

  13. Brewstar, R. A., & Gebhart, B. (1991). Instability and disturbance amplification in a mixed-convection boundary layer. Journal of Fluid Mechanics, 229, 115–133.

    Article  Google Scholar 

  14. Cebeci, T., & Bradshaw, P. (1977). Momentum transfer in boundary layers. Washington, DC: Hemisphere Publishing Corporation.

    MATH  Google Scholar 

  15. Chen, T. S., & Moutsoglu, A. (1979). Wave instability of mixed convection flow on inclined surfaces. Numerical Heat Transfer, 2, 497–509.

    Article  Google Scholar 

  16. Chen, T. S., & Mucoglu, A. (1979). Wave instability of mixed convection flow over a horizontal flat plate. International Journal of Heat and Mass Transfer, 22, 185–196.

    Article  Google Scholar 

  17. Chen, T. S., Sparrow, E. M., & Mucoglu, A. (1977). Mixed convection in boundary layer flow on a horizontal plate. ASME Journal of Heat Transfer, 99, 66–71.

    Article  Google Scholar 

  18. Chomaz, J. M. (2005). Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annual Review of Fluid Mechanics, 37, 357–392.

    Article  MathSciNet  Google Scholar 

  19. Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. UK: Cambridge University Press.

    MATH  Google Scholar 

  20. Eckert, E. R. G. & Soehngen, E. (1951). Interferometric studies on the stability and transition to turbulence in a free-convection boundary-layer. Proceedings of the General Discussion on Heat Transfer, ASME and IME London (Vol. 321) (1951)

    Google Scholar 

  21. Eiseman, P. R. (1985). Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics, 17, 487–522.

    Article  Google Scholar 

  22. Fasel, H., & Konzelmann, U. (1990). Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 311–347.

    Article  Google Scholar 

  23. Gaster, M. (1974). On the effect of boundary-layer growth on flow stability. Journal of Fluid Mechanics, 66(3), 465–480.

    Article  Google Scholar 

  24. Gebhart, B., Jaluria, Y., Mahajan, R. L., & Sammakia, B. (1988). Buoyancy-induced flows and transport. Washington, DC: Hemisphere Publications.

    Google Scholar 

  25. Gilpin, R. R., Imura, H., & Cheng, K. C. (1978). Experiments on the onset of longitudinal vortices in horizontal Blasius flow heated from below. ASME Journal of Heat Transfer, 100, 71–77.

    Article  Google Scholar 

  26. Haaland, S. E., & Sparrow, E. M. (1973). Vortex instability of natural convection flows on inclined surfaces. International Journal of Heat Mass Transfer, 16, 2355–2367.

    Article  Google Scholar 

  27. Hall, P., & Morris, H. (1992). On the instability of boundary layers on heated flat plates. Journal of Fluid Mechanics, 245, 367–400.

    Article  MathSciNet  Google Scholar 

  28. Heisenberg, W. (1924). \(\ddot{\rm U}\)ber stabilit\({\ddot{\rm a}}\)t und turbulenz von fl\({\ddot{\rm u}}\)ssigkeitsstr\({\ddot{\rm o}}\)men. Annalen der Physik Leipzig, 379, 577–627 (Translated as ‘On stability and turbulence of fluid flows’. NACA Tech. Memo. Wash. No 1291 1951)

    Google Scholar 

  29. Iyer, P. A., & Kelly, R. E. (1974). The instability of the laminar free convection flow induced by a heated, inclined plate. International Journal of Hear Mass Transfer, 17, 517–525.

    Article  Google Scholar 

  30. Jain, M. K., Iyengar, S. R. K. & Jain, R. K. (2003). Numerical methods for scientific and engineering computation. New Delhi: New Age International

    Google Scholar 

  31. Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1991). Onset of three-dimensionality, equibria and early transition in flow over a backward-facing step. Journal of Fluid Mechanics, 231, 501–528.

    Article  Google Scholar 

  32. Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1996). Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. Journal of Fluid Mechanics, 321, 157–187.

    Article  Google Scholar 

  33. Kloker, M., Konzelmann, U., & Fasel, H. (1993). Outflow boundary conditions for spatial Navier-Stokes simulations of transitional boundary layers. AIAA Journal, 31, 620.

    Article  Google Scholar 

  34. Kreyszig, E. (1999). Advanced engineering mathematics. Singapore: Wiley.

    MATH  Google Scholar 

  35. Leal, L. G. (1973). Steady separated flow in a linearly decelerated free stream. Journal of Fluid Mechanics, 59, 513–535.

    Article  Google Scholar 

  36. Liu, Z., & Liu, C. (1994). Fourth order finite difference and multigrid methods for modeling instabilities in flat plate boundary layer-2D and 3D approaches. Computers and Fluids, 23, 955–982.

    Article  MathSciNet  Google Scholar 

  37. Lloyd, J. R., & Sparrow, E. M. (1970). On the instability of natural convection flow on inclined plates. Journal of Fluid Mechanics, 42, 465–470.

    Article  Google Scholar 

  38. Lord, R. (1880). On the stability or instability of certain fluid motions. Scientific Papers, 1, 361–371.

    Google Scholar 

  39. Marquet, O., Sipp, D., Chomaz, J. M., & Jacquin, L. (2008). Amplifier and resonator dynamics of a low Reynolds-number recirculation bubble in a global framework. Journal of Fluid Mechanics, 605, 429–443.

    Article  Google Scholar 

  40. Moutsoglu, A., Chen, T. S., & Cheng, K. C. (1981). Vortex instability of mixed convection flow over a horizontal flat plate. ASME Journal of Heat Transfer, 103, 257–261.

    Article  Google Scholar 

  41. Mucoglu, A., & Chen, T. S. (1978). Wave instability of mixed convection flow along a vertical flat plate. Numerical Heat Transfer, 1, 267–283.

    Article  Google Scholar 

  42. Mureithi, E. W., & Denier, J. P. (2010). Absolute-convective instability of mixed forced-free convection boundary layers. Fluid Dynamics Research, 372, 517–534.

    MathSciNet  MATH  Google Scholar 

  43. Ng, B. S., & Reid, W. H. (1980). On the numerical solution of the Orr-Sommerfeld problem: Asymptotic initial conditions for shooting method. Journal of Computational Physics, 38, 275–293.

    Article  MathSciNet  Google Scholar 

  44. Ng, B. S., & Reid, W. H. (1985). The compound matrix method for ordinary differential systems. Journal of Computational Physics, 58, 209–228.

    Article  MathSciNet  Google Scholar 

  45. Rajpoot, M. K., Sengupta, T. K., & Dutt, P. K. (2010). Optimal time advancing dispersion relation preserving schemes. Journal of Computational Physics, 229(10), 3623–3651.

    Article  MathSciNet  Google Scholar 

  46. Saric, W. S., & Nayfeh, A. H. (1975). Nonparallel stability of boundary-layer flows. Physics of Fluids, 18(8), 945–950.

    Article  Google Scholar 

  47. Schlatter, P., & \(\ddot{O}rl\ddot{u}\), R. (2012). Turbulent boundary layers at moderate Reynolds numbers. Journal of Fluid Mechanics, 710, 5–34.

    Article  Google Scholar 

  48. Schlichting, H. (1933). Zur entstehung der turbulenz bei der plattenstr\({\ddot{\rm o}}\)mung. Nach. Gesell. d. Wiss. z. G\({\ddot{\rm o}}\)tt., MPK,42, 181–208

    Google Scholar 

  49. Schneider, W. (1979). A similarity solution for combined forced and free convection flow over a horizontal plate. International Journal of Heat and Mass Transfer, 22, 1401–1406.

    Article  Google Scholar 

  50. Schubauer, G. B., & Skramstad, H. K. (1947). Laminar boundary layer oscillations and the stability of laminar flow. Journal of Aerosol Science, 14(2), 69–78.

    Google Scholar 

  51. Sengupta T. K. (1990). Receptivity of a growing boundary layer to surface excitation. (Unpublished manuscript).

    Google Scholar 

  52. Sengupta, T. K. (1991). Impulse response of laminar boundary layer and receptivity. In C. Taylor (Ed.), Proceedings of the 7th International Conference Numerical Methods in Laminar and Turbulent Layers. Stanford University

    Google Scholar 

  53. Sengupta, T. K. (2012). Instabilities of flows and transition to turbulence. Florida, USA: CRC Press, Taylor & Francis Group.

    Google Scholar 

  54. Sengupta, T. K. (2013). High accuracy computing methods: Fluid flows and wave phenomenon. USA: Cambridge University Press.

    Book  Google Scholar 

  55. Sengupta, T. K., & Bhaumik, S. (2011). Onset of turbulence from the receptivity stage of fluid flows. Physical Review Letters, 154501, 1–5.

    Google Scholar 

  56. Sengupta, T. K., & Venkatasubbaiah, K. (2006). Spatial stability for mixed convection boundary layer over a heated horizontal plate. Studies in Applied Mathematics, 117, 265–298.

    Article  MathSciNet  Google Scholar 

  57. Sengupta, T. K., Ballav, M., & Nijhawan, S. (1994). Generation of Tollmien-Schlichting waves by harmonic excitation. Physics of Fluids, 6(3), 1213–1222.

    Article  Google Scholar 

  58. Sengupta, T. K., Bhaumik, S., Singh, V., & Shukl, S. (2009). Nonlinear and nonparallel receptivity of zero-pressure gradient boundary layer. International Journal of Emerging Multidisciplinary Fluid Sciences, 1, 19–35.

    Article  Google Scholar 

  59. Sengupta, T. K., Chattopadhyay, M., Wang, Z. Y., & Yeo, K. S. (2002). By-pass mechanism of transition to turbulence. Journal of Fluids and Structures, 16, 15–29.

    Article  Google Scholar 

  60. Sengupta, T. K., De, S., & Sarkar, S. (2003). Vortex-induced instability of an incompressible wall-bounded shear layer. Journal of Fluid Mechanics, 493, 277–286.

    Article  MathSciNet  Google Scholar 

  61. Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growing wave fronts in spatially stable boundary layers. Physical Review Letters, 96(22), 224504.

    Article  Google Scholar 

  62. Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growth of disturbances in a boundary layer and energy based receptivity analysis. Physics of Fluids, 18, 094101.

    Article  MathSciNet  Google Scholar 

  63. Sengupta, T. K., Sircar, S. K., & Dipankar, A. (2006). High accuracy compact schemes for DNS and acoustics. Journal of Scientific Computing, 26(2), 151–193.

    Article  MathSciNet  Google Scholar 

  64. Sengupta, T. K., Unnikrishnnan, S., Bhaumik, S., Singh, P., & Usman, S. (2011). Linear spatial stability analysis of mixed convection boundary layer over a heated plate. Program in Applied Mathematics, 1(1), 71–89.

    Google Scholar 

  65. Sengupta, T. K., Bhaumik, S., & Bhumkar, Y. (2012). Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Physical Review E, 85(2), 026308.

    Article  Google Scholar 

  66. Sengupta, T. K., Bhaumik, S., & Bose, R. (2013). Direct numerical simulation of transitional mixed convection flows: Viscous and inviscid instability mechanisms. Physics of Fluids, 25, 094102.

    Article  Google Scholar 

  67. Shaukatullah, H., & Gebhart, B. (1978). An experimental investigation of natural convection flow on an inclined surface. International Journal of Heat and Mass Transfer, 21, 1481–1490.

    Article  Google Scholar 

  68. Sparrow, E. M., & Husar, R. B. (1969). Longitudinal vortices in natural convection flow on inclined plates. Journal of Fluid Mechanics, 37, 251–255.

    Article  Google Scholar 

  69. Sparrow, E. M., & Minkowycz, W. J. (1962). Buoyancy effects on horizontal boundary-layer flow and heat transfer. International Journal of Heat and Mass Transfer, 5, 505–511.

    Article  Google Scholar 

  70. Skote, M., Haritonidis, J. H., & Henningson, D. S. (2002). Varicose instabilities in turbulent boundary layers. Physics of Fluids, 14, 2309–2323.

    Article  Google Scholar 

  71. Tollmien, W. (1931). \(\ddot{\rm U}\)ber die enstehung der turbulenz. I, English translation. NACA TM 609

    Google Scholar 

  72. Tumin, A. (2003). The spatial stability of natural convection flow on inclined plates. ASME Journal of Fluids Engineering, 125, 428–437.

    Article  Google Scholar 

  73. Unnikrishnan, S. (2011). Linear stability analysis and nonlinear receptivity study of mixed convection boundary layer developing over a heated flat plate. M. Tech. thesis (I.I.T. Kanpur, 2011)

    Google Scholar 

  74. Van der Pol, B., & Bremmer, H. (1959). Operational calculus based on two-sided Laplace integral. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  75. Wang, X. A. (1982). An experimental study of mixed, forced, and free convection heat transfer from a horizontal flat plate to air. ASME Journal of Heat Transfer, 104, 139–144.

    Article  Google Scholar 

  76. Wu, R. S., & Cheng, K. C. (1976). Thermal instability of Blasius flow along horizontal plates. International Journal of Heat and Mass Transfer, 19, 907–913.

    Article  Google Scholar 

  77. Zhang, S. L. (1997). GPBi-CG: Generalized product-type methods based on Bi-CG for solving Non symmetric linear systems. SIAM Journal on Scientific Computing, 18(2), 537–551.

    Article  MathSciNet  Google Scholar 

  78. Zuercher, E. J., Jacobs, J. W., & Chen, C. F. (1998). Experimental study of the stability of boundary-layer flow along a heated inclined plate. J. Fluid Mech., 367, 1–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan K. Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, T.K., Bhaumik, S. (2019). Receptivity and Instability. In: DNS of Wall-Bounded Turbulent Flows. Springer, Singapore. https://doi.org/10.1007/978-981-13-0038-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0038-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0037-0

  • Online ISBN: 978-981-13-0038-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics