Advertisement

Sensor Synchronization for Android Phone Tightly-Coupled Visual-Inertial SLAM

  • Zheyu Feng
  • Jianwen Li
  • Taogao Dai
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 499)

Abstract

At present, the majority of Android phones only support satellite positioning and cellular localization. Both of them are of poor indoor performance, which limits the development of the relevant indoor location based services. In this paper, we attempt to achieve positioning with raw image and Inertial Measurement Unit (IMU) data from Android phone. We first introduce a state-of-the-art framework for tightly-coupled monocular visual-inertial Simultaneous Localization and Mapping (SLAM) using image and IMU data. Then we focus on the unsynchronization problem between camera and IMU of Android phone, and propose a grid search algorithm based on spherical quaternion interpolation for delay estimation. The results of indoor and outdoor experiments show that the algorithm can estimate the delay of image timestamp effectively, and the percentage of positioning plane error is 0.79% indoors and 8.09% outdoors respectively.

Keywords

Android phone Tightly-coupled Synchronization SLAM VINS 

References

  1. 1.
    Xu Y (2016) The research and implementation of positioning technology based on base station of mobile terminal. Dalian Maritime University, ChinaGoogle Scholar
  2. 2.
    Quan M, Piao S, Li G (2016) An overview of visual SLAM. CAAI Trans Intell Syst 11(06):768–776Google Scholar
  3. 3.
    Qin T, Li P, Shen S (2017) VINS-mono: a robust and versatile monocular visual-inertial state estimator. arXiv preprint arXiv:1708,03852Google Scholar
  4. 4.
    Li P, Qin T, Botao H et al (2017) Monocular visual-inertial state estimation for mobile augmented reality. In: Proceedings of the IEEE international symposium on mixed and augmented reality, Nantes, FranceGoogle Scholar
  5. 5.
    Corke P, Lobo J, Dias J (2007) An introduction to inertial and visual sensin. Int J Rob Res 26(6):519–535CrossRefGoogle Scholar
  6. 6.
    Kelly J, Sukhatme G (2011) Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int J Rob Res 30(1):56–79CrossRefGoogle Scholar
  7. 7.
    Geyer C, Meingast M, Sastry S (2005) Geometric models of rolling shutter cameras. In: Proceedings workshop omnidirectional visionGoogle Scholar
  8. 8.
    Karpenko A, Jacobs D, Baek J, Levoy M (2011) Digital video stabilization and rolling shutter correction using gyroscopes. Technical Report, Stanford UniversityGoogle Scholar
  9. 9.
    Hanning G, Forslöw N, Forssén PE, Ringaby E, Törnqvist D, Callmer J (2011) Stabilizing cell phone video using inertial measurement sensors. In: Proceedings of IEEE international workshop on mobile visionGoogle Scholar
  10. 10.
    Hwangbo M, Kim J-S, Kanade T (2011) Gyro-aided feature tracking for a moving camera: fusion, auto-calibration and GPU implementation. Int J Rob Res 30(14):1755–1774CrossRefGoogle Scholar
  11. 11.
    Jia C, Evans BL (2012) Probabilistic 3-D motion estimation for rolling shutter video rectification from visual and inertial measurements. In: Proceedings of IEEE international workshop multimedia signal processingGoogle Scholar
  12. 12.
    Li M, Kim B, Mourikis A (2013) Real-time motion tracking on a cellphone using inertial sensing and a rolling shutter camera. In: Proceedings of IEEE international robotics and automationGoogle Scholar
  13. 13.
    Li M, Mourikis A (2013) 3-D motion estimation and online temporal calibration for camera-IMU systems. In: Proceedings of IEEE international robotics and automationGoogle Scholar
  14. 14.
    Google. Camera API. https://developer.android.com/
  15. 15.
    Google. Motion sensors. https://developer.android.com/
  16. 16.
    Latimer R, Holloway J, Veeraraghavan A et al (2014) SocialSync: sub-frame synchronization in a smartphone camera network. Computer vision—ECCV 2014 workshops. Springer International Publishing, Basel, pp 561–575Google Scholar
  17. 17.
    Forster C, Carlone L, Dellaert F et al (2015) IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. Robotics: science and systemsGoogle Scholar
  18. 18.
    Shoemake K (1985) Animating rotation with quaternion curves. In: International conference on CGIT, pp 245–254CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Information Engineering UniversityZhengzhouChina
  2. 2.63883 TroopsLuoyangChina

Personalised recommendations