Repeated Burst Error Correcting Linear Codes Over GF(q); q = 3
Conference paper
First Online:
Abstract
In this paper, we develop a simple matrix method of constructing a parity check matrix for non binary (5k, k; b, q, m) linear codes capable of correcting m repeated burst errors of length b or less.
Keywords
Repeated burst Burst error Open loop and closed loop bursts Parity check digits Error patterns and syndromeNotes
Acknowledgement
The authors are thankful to Bharat Garg and Preeti for their technical assistance.
References
- 1.Abramson, N.M.: A class of systemic codes for non independent errors. IRE Trans. Inf. Theor. IT-5(4), 150–157 (1959)CrossRefGoogle Scholar
- 2.Bridwell, J.D., Wolf, J.K.: Burst distance and multiple burst correction. Bell Syst. Tech. J. 99, 889–909 (1970)MathSciNetCrossRefGoogle Scholar
- 3.Chien, R.T., Tang, D.T.: Definition of a burst. IBM J. Res. Dev. 9(4), 292–293 (1965)MathSciNetCrossRefGoogle Scholar
- 4.Dass, B.K., Verma, R.: Construction of m-repeated bursts error correcting binary linear code. Discret. Math. Algorithms Appl. 4(3), 1250043 (2012). (7 p.)MathSciNetCrossRefGoogle Scholar
- 5.Dass, B.K., Verma, R.: Repeated burst error correcting linear codes. Asian Eur. J. Math. 1(3), 303–335 (2008)MathSciNetCrossRefGoogle Scholar
- 6.Fire, P.: A class of multiple error correcting binary Codes for non independent errors, Sylvania report RSL- E-2. Sylvania Reconnaissance Systems Laboratory, Mountain View (1959)Google Scholar
- 7.Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
- 8.Peterson, W.W., Weldon Jr., E.J.: Error Correcting Codes, 2nd edn. The MIT Press, Mass (1972)MATHGoogle Scholar
- 9.Posner, E.C.: Simultaneous error correction and burst error detecting using binary linear cyclic codes. J. Soc. Ind. Appl. Math. 13(4), 1087–1095 (1965)CrossRefGoogle Scholar
- 10.Srinivas, K.V., Jain, R., Saurav, S., Sikdar, S.K.: Small-world network topology of hippocampal neuronal network is lost in an in vitro glutamate injury model of epilosy. Eur. Neurosci. 25, 3276–3280 (2007)CrossRefGoogle Scholar
- 11.Wolf, J.K.: On codes derivable from the tensor product of matrices. IEEE Trans. Inf. Theor. IT-11(2), 281–284 (1965)MathSciNetCrossRefGoogle Scholar
- 12.Wyner, A.D.: Low-density-burst-correcting codes. IEEE Trans. Inf. Theor. 9, 124 (1963)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018