Advertisement

Fixed Point Results for \((\phi ,\psi )\)-Weak Contraction in Fuzzy Metric Spaces

  • Vandana Tiwari
  • Tanmoy Som
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 834)

Abstract

In the present work, a fixed point result for generalized weakly contractive mapping in fuzzy metric space has been established. An example is cited to illustrate the obtained result.

Keywords

Weak contraction Fuzzy metric Fixed points 

References

  1. 1.
    Alber, Y.I., Guerre-Delabriere, S.: Principle of weak contractive mapes in Hilbert space. In: New Results in Operator Theory and its Applications, vol. 98. Birkhuser, Basel, pp. 7–22 (1997)CrossRefGoogle Scholar
  2. 2.
    Kramosil, O., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetica 11, 326–334 (1975)MathSciNetzbMATHGoogle Scholar
  3. 3.
    George, A., Veeramani, P.: On some results in fuzzy metric space. Fuzzy Sets Syst. 64, 395–399 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grabice, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1988)CrossRefGoogle Scholar
  6. 6.
    Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Berinde, V.: Approximating fixed points of weak \(\phi \)-contractions. Fixed Point Theor. 4, 131–142 (2003)zbMATHGoogle Scholar
  8. 8.
    Zhang, Q., Song, Y.: Fixed point theory for generalized \(\phi \)-weak contractions. Appl. Math. Lett. 22, 75–78 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dutta, P.N., Choudhury, B.S.: A generalization of contraction principle in metric spaces. Fixed Point Theor. Appl. 1–8 (2008). Article ID 406368Google Scholar
  10. 10.
    Som, T., Choudhury, B.S., Das, K.P.: Two common fixed point results in fuzzy metric spaces. Internat. Rev. Fuzzy. Math. 6, 21–32 (2011)Google Scholar
  11. 11.
    Doric, D.: Common fixed point for generalized \((\psi \)-\(\phi )\)-weak contractions. Appl. Math. Lett. 22, 1896–1900 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Popescu, O.: Fixed point for \((\psi \)-\(\phi )\)-weak contractions. Appl. Math. Lett. 24, 1–4 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karapinar, E.: Fixed point theory for cyclic weak \(\phi \)-contraction. Appl. Math. Lett. 24, 822–825 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rouhani, B., Moradi, S.: Common fixed point of multivalued generalized \(\phi \)-weak contractive mappings. Fixed Point Theor. Appl. 1–13 (2010). Article ID 708984Google Scholar
  15. 15.
    Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \((\alpha \)-\(\psi )\)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Choudhury, B.S., Konar, P., Rhoades, B.E., Metiya, N.: Fixed point theorems for generalized weakly contractive mappings. Nonlin. Anal. 74, 2116–2126 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Moradi, S., Farajzadeh, A.: On the fixed point of \((\psi \)-\(\phi )\)-weak and generalized \((\psi \)-\(\phi )\)-weak contraction mappings. Appl. Math. Lett. 25, 1257–1262 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jamala, N., Sarwara, M., Imdad, M.: Fixed point results for generalized \((\psi \)-\(\phi )\)-weak contractions with an application to system of non-linear integral equations. Trans. A Razm. Math. Inst. 171, 182–194 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Aydi, H., Karapnar, E., Shatanawi, W.: Coupled fixed point results for \((\psi \)-\(\phi )\)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 62, 4449–4460 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Aydi, H., Postolache, M., Shatanawi, W.: Coupled fixed point results for \((\psi \)-\(\phi )\)-weakly contractive mappings in ordered \(G\)-metric spaces. Comput. Math. Appl. 63, 298–309 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    An, T.V., Chi, K.P., Karapnar, E., Thanh, T.D.: An extension of generalized \((\psi \)-\(\phi )\)-weak contractions. Int. J. Math. Math. Sci. 1–11 (2012). Article ID 431872Google Scholar
  22. 22.
    Latif, A., Mongkolkeha, C., Sintunavarat, W.: Fixed point theorems for generalized \(\alpha \)-\(\beta \)-weakly contraction mappings in metric spaces and applications. Sci. World J. 1–14 (2014). Article ID 784207Google Scholar
  23. 23.
    Jha, K., Abbas, M., Beg, I., Pant, R.P., Imdad, M.: Common fixed point theorem for \((\psi \)-\(\phi )\)-weak contraction in suzzy metric space. Bull. Math. Anal. Appl. 3, 149–158 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Luo, T.: Fuzzy \((\psi \)-\(\phi )\)-contractive mapping and fixed point theorem. Appl. Math. Sci. 8(148), 7375–7381 (2016)Google Scholar
  25. 25.
    Saha, P., Choudhury, B.S., Das, P.: Weak coupled coincidence point results having a partially ordering in fuzzy metric space. Fuzzy. Inf. Eng. 7, 1–18 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations