Local and Global Stability of Fractional Order HIV/AIDS Dynamics Model

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 834)

Abstract

In this article, we discussed the dynamical behaviour of a fractional order HIV/AIDS virus dynamics model which takes account the cure of infected cells and loss of viral particles due to the fusion into uninfected cells. The local and global stability of the model is studied for disease-free equilibrium point with the help of next generation matrix method. Moreover, the numerical solutions for some particular cases are provided to verify the analytical results.

Keywords

HIV/AIDS Local and global stability Numerical solution 

References

  1. 1.
    Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Machado, J.A.T., Silva, M.F., Barbosa, R.M., Jesus, I.S., Reis, C.M., Marcos, M.G., Gal-hano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 1–34 (2010)CrossRefGoogle Scholar
  3. 3.
    Das, S., Gupta, P.K.: A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 277(1), 1–6 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gupta, P.K.: Approximate analytical solutions of fractional BenneyLin equation by reduced differential transform method and the homotopy perturbation method. Comput. Math. Appl. 61(9), 2829–2842 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ali, M.F., Sharma, M., Jain, R.: An application of fractional calculus in electrical engineering. Adv. Eng. Technol. Appl. 5(2), 41–45 (2016)CrossRefGoogle Scholar
  6. 6.
    Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRefGoogle Scholar
  7. 7.
    Atangana, A., Koca, I.: Chaos in a simple nonlinear system with AtanganaBaleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Atangana, A.: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Safiel, R., Massawe, E.S., Makinde, D.O.: Modelling the effect of screening and treatment on transmission of HIV/AIDS infection in a population. Am. J. Math. Stat. 2(4), 75–88 (2012)CrossRefGoogle Scholar
  10. 10.
    Kaur, N., Ghosh, M., Bhatia, S.S.: Mathematical analysis of the transmission dynamics of HIV/AIDS: role of female sex workers. Appl. Math. Inf. Sci. 8(5), 2491–2501 (2014)CrossRefGoogle Scholar
  11. 11.
    Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4+ T-cells. Math. Comput. Model. 50, 386–392 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gkdogan, A., Yildirim, A., Merdan, M.: Solving a fractional order model of HIV infection of CD4+ T cells. Math. Comput. Model. 54, 2132–2138 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Arafa, A.A.M., Rida, S.Z., Khalil, M.: A fractional-order model of HIV infection with drug therapy effect. J. Egypt. Math. Soc. 22, 538–543 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332, 709–726 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Srivastava, P.K., Chandra, P.: Modelling the dynamics of HIV and CD4+ T cells during primary infection. Nonlinear Anal. Real World Appl. 11(2), 612–618 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hattaf, K., Yousfi, N.: Global stability of a virus dynamics model with cure rate and absorption. J. Egypt. Math. Soc. 22, 386–389 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of Technology SilcharSilcharIndia

Personalised recommendations