On Leaf Node Edge Switchings in Spanning Trees of De Bruijn Graphs

  • Suman Roy
  • Srinivasan Krishnaswamy
  • P. Vinod Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 834)


An n-th order k-ary de Bruijn sequence is a cyclic sequence of length \(k^{n}\) which contains every possible k-ary subsequence of length n exactly once during each period. In this paper, we show that, if we fix the initial n bits, any n-th order de Bruijn sequence can be transformed to another using a sequence of transformations.


De Bruijn sequences De Bruijn graph Pseudorandom sequence generator Shift register 



The authors are grateful to Prof. Harish K. Pillai, Department of Electrical Engineering, Indian Institute of Technology Bombay, without whom this work would never have been possible.


  1. 1.
    Annexstein, F.S.: Generating de Bruijn sequences: an efficient implementation. IEEE Trans. Comput. 46(2), 198–200 (1997)CrossRefGoogle Scholar
  2. 2.
    Bidkhori, H., Kishore, S.: A bijective proof of a theorem of Knuth. Comb. Probab. Comput. 20(1), 11–25 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    De Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandsche Akademie Van Wetenschappen, vol. 49, no. 6, pp. 758–764, June 1946Google Scholar
  4. 4.
    Etzion, T., Lempel, A.: Algorithms for the generation of full-length shift-register sequences. IEEE Trans. Inf. Theory 30(3), 480–484 (1984)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fredricksen, H.M.: Disjoint cycles from the de Bruijn graph. Technical report, DTIC Document (1968)Google Scholar
  7. 7.
    Golomb, S.W., et al.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)zbMATHGoogle Scholar
  8. 8.
    Jansen, C.J.A.: Investigations on nonlinear streamcipher systems: construction and evaluation methods. Ph.D. thesis, Technische Universiteit Delft (1989)Google Scholar
  9. 9.
    Lempel, A.: On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. 100(12), 1204–1209 (1970)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. In: Topics in Finite Fields, vol. 632, pp. 335–346 (2015)Google Scholar
  11. 11.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, New York (2007)zbMATHGoogle Scholar
  12. 12.
    Spinsante, S., Andrenacci, S., Gambi, E.: De Bruijn sequences for spread spectrum applications: analysis and results. In: 18th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2010, pp. 365–369, September 2010Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Bharat Broadband Network LimitedTrivandrumIndia

Personalised recommendations