Advertisement

Flow-Free Video Object Segmentation

Conference paper
  • 1.1k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 841)

Abstract

Segmenting foreground object from a video is a challenging task because of large deformations of objects, occlusions, and background clutter. In this paper, we propose a frame-by-frame but computationally efficient approach for video object segmentation by clustering visually similar generic object segments throughout the video. Our algorithm segments object instances appearing in the video and then performs clustering in order to group visually similar segments into one cluster. Since the object that needs to be segmented appears in most part of the video, we can retrieve the foreground segments from the cluster having maximum number of segments. We then apply a track and fill approach in order to localize the object in the frames where the object segmentation framework fails to segment any object. Our algorithm performs comparably to the recent automatic methods for video object segmentation when benchmarked on DAVIS dataset while being computationally much faster.

Keywords

Video Object Segmentation Foreground Segment DAVIS Dataset Proposed Regulation Optical Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1583–1590. IEEE (2011)Google Scholar
  2. 2.
    Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15555-0_21CrossRefGoogle Scholar
  3. 3.
    Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1777–1784 (2013)Google Scholar
  4. 4.
    Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 628–635 (2013)Google Scholar
  5. 5.
    Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1995–2002. IEEE (2011)Google Scholar
  6. 6.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  7. 7.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 309–314. ACM (2004)Google Scholar
  8. 8.
    Kuettel, D., Ferrari, V.: Figure-ground segmentation by transferring window masks. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 558–565. IEEE (2012)Google Scholar
  9. 9.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2141–2148. IEEE (2010)Google Scholar
  10. 10.
    Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1202–1209. IEEE (2012)Google Scholar
  11. 11.
    Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC, vol. 2, no. 7, p. 8 (2014)Google Scholar
  12. 12.
    Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. In: ACM Transactions on Graphics (ToG), vol. 28, no. 3, p. 70. ACM (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, T., Collomosse, J.: Probabilistic motion diffusion of labeling priors for coherent video segmentation. IEEE Trans. Multimed. 14(2), 389–400 (2012)CrossRefGoogle Scholar
  14. 14.
    Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1530–1537. IEEE (2009)Google Scholar
  15. 15.
    Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label MRF optimization. BMVC (2010)Google Scholar
  16. 16.
    Maerki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  17. 17.
    Caelles, S., Maninis, K.-K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  18. 18.
    Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)Google Scholar
  19. 19.
    Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15555-0_42CrossRefGoogle Scholar
  20. 20.
    Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_5CrossRefGoogle Scholar
  21. 21.
    Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates. In: Advances in Neural Information Processing Systems, pp. 1990–1998 (2015)Google Scholar
  22. 22.
    Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33712-3_62CrossRefGoogle Scholar
  23. 23.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  24. 24.
    Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)Google Scholar
  25. 25.
    Fragkiadaki, K., Zhang, G., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1846–1853. IEEE (2012)Google Scholar
  26. 26.
    Taylor, B., Karasev, V., Soatto, S.: Causal video object segmentation from persistence of occlusions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4268–4276 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Electrical EngineeringIndian Institute of Technology GandhinagarGandhinagarIndia

Personalised recommendations