Advertisement

Description Based Person Identification: Use of Clothes Color and Type

  • Priyansh Shah
  • Mehul S. Raval
  • Shvetal Pandya
  • Sanjay Chaudhary
  • Anand Laddha
  • Hiren Galiyawala
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 841)

Abstract

Surveillance videos can be searched for person identification using soft-biometrics. The proposed paper use clothes color and their type for person identification in a video. A height model and the ISCC-NBS color descriptors are used for human localization and color classification. Experimental results are demonstrated on the custom video database and compared with Gaussian mixture model based search model. It is shown that the proposed approach identifies a person correctly with high accuracy and outperforms Gaussian mixture based search model. The paper also develops a new vocabulary to describe the clothing type for a human.

Keywords

Color model Classification Person identification Soft-biometrics 

Notes

Acknowledgments

The authors would like to thank Board of Research in Nuclear Sciences (BRNS) for generous grant (36(3)/14/20/2016-BRNS/36020) to carry out this research work. We would also like to thank the SAIVT Research Labs at Queensland University of Technology (QUT) for freely supplying us with the SAIVT-SoftBioSearch database for our research. The authors are also thankful to volunteers for their participation in creation of the dataset.

References

  1. 1.
    Reid, D., Samangooei, S., Chen, C., Nixon, M., Ross, A.: Soft biometrics for surveillance: an overview. Mach. Learn. Theory Appl. 31, 327–352 (2013)MathSciNetGoogle Scholar
  2. 2.
    Demirkus, M., Garg, K., Guler, S.: Automated person categorization for video surveillance using soft biometrics. In: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, p. 76670P (2010)Google Scholar
  3. 3.
    Thornton, J., Baran-Gale, J., Butler, D., Chan, M., Zwahlen, H.: Person attribute search for large-area video surveillance. In: 2011 IEEE International Conference on Technologies for Homeland Security (HST), pp. 55–61. IEEE (2011)Google Scholar
  4. 4.
    An, L., Chen, X., Kafai, M., Yang, S., Bhanu, B.: Improving person re-identification by soft biometrics based reranking. In: 2013 Seventh International Conference on Distributed Smart Cameras (ICDSC), pp. 1–6. IEEE (2013)Google Scholar
  5. 5.
    Raval, M.S.: Digital video forensics: description based person identification. CSI Commun. 39, 9–11 (2016)Google Scholar
  6. 6.
    Dantcheva, A., Velardo, C., Dangelo, A., Dugelay, J.L.: Bag of soft biometrics for person identification. Multimedia Tools Appl. 51(2), 739–777 (2011)CrossRefGoogle Scholar
  7. 7.
    Kim, M.G., Moon, H.M., Chung, Y., Pan, S.B.: A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system. BioMed Res. Int. 2012, 1–7 (2012)Google Scholar
  8. 8.
    MacLeod, M.D., Frowley, J.N., Shepherd, J.W.: Whole body information: its relevance to eyewitnesses. Adult eyewitness testimony: current trends and developments, pp. 125–143 (1994)Google Scholar
  9. 9.
    Zhang, G., Jiang, P., Matsumoto, K., Yoshida, M., Kita, K.: Reidentification of persons using clothing features in real-life video. Appl. Comput. Intell. Soft Comput. 2017, 9 (2017)Google Scholar
  10. 10.
    D’Angelo, A., Dugelay, J.L.: Color based soft biometry for hooligans detection. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1691–1694. IEEE (2010)Google Scholar
  11. 11.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40(3), 1106–1122 (2007)CrossRefGoogle Scholar
  12. 12.
    Mogelmose, A., Moeslund, T.B., Nasrollahi, K.: Multimodal person re-identification using RGB-D sensors and a transient identification database. In: 2013 International Workshop on Biometrics and Forensics (IWBF), pp. 1–4. IEEE (2013)Google Scholar
  13. 13.
    Moon, H.M., Pan, S.B.: A new human identification method for intelligent video surveillance system. In: 2010 Proceedings of 19th International Conference on Computer Communications and Networks, pp. 1–6 (2010)Google Scholar
  14. 14.
    Chien, S.Y., Chan, W.K., Cherng, D.C., Chang, J.Y.: Human object tracking algorithm with human color structure descriptor for video surveillance systems. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 2097–2100. IEEE (2006)Google Scholar
  15. 15.
    Hu, M., Hu, W., Tan, T.: Tracking people through occlusions. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 724–727. IEEE (2004)Google Scholar
  16. 16.
    Nakajima, C., Pontil, M., Heisele, B., Poggio, T.: Full-body person recognition system. Pattern Recogn. 36(9), 1997–2006 (2003)CrossRefGoogle Scholar
  17. 17.
    Hahnel, M., Klunder, D., Kraiss, K.F.: Color and texture features for person recognition. In: Proceedings of 2004 IEEE International Joint Conference on Neural Networks, vol. 1, pp. 647–652. IEEE (2004)Google Scholar
  18. 18.
    Ma, B., Li, Q., Chang, H.: Gaussian descriptor based on local features for person re-identification. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9010, pp. 505–518. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16634-6_37CrossRefGoogle Scholar
  19. 19.
    Park, U., Jain, A.K., Kitahara, I., Kogure, K., Hagita, N.: Vise: visual search engine using multiple networked cameras. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 1204–1207. IEEE (2006)Google Scholar
  20. 20.
    Jang, K., Han, S., Kim, I.: Person re-identification based on color histogram and spatial configuration of dominant color regions. arXiv preprint arXiv:1411.3410 (2014)
  21. 21.
    Kao, J.-H., Lin, C.-Y., Wang, W.-H., Wu, Y.-T.: A unified hierarchical appearance model for people re-identification using multi-view vision sensors. In: Huang, Y.-M.R., Xu, C., Cheng, K.-S., Yang, J.-F.K., Swamy, M.N.S., Li, S., Ding, J.-W. (eds.) PCM 2008. LNCS, vol. 5353, pp. 553–562. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89796-5_57CrossRefGoogle Scholar
  22. 22.
    Denman, S., Halstead, M., Bialkowski, A., Fookes, C., Sridharan, S.: Can you describe him for me? A technique for semantic person search in video. In: 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pp. 1–8. IEEE (2012)Google Scholar
  23. 23.
    Halstead, M., Denman, S., Sridharan, S., Fookes, C.: Locating people in video from semantic descriptions: a new database and approach. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 4501–4506. IEEE (2014)Google Scholar
  24. 24.
    Kelly, K.L., Judd, D.B.: Color: Universal Language and Dictionary of Names, vol. 440. US Department of Commerce, National Bureau of Standards, Washington, D.C. (1976)CrossRefGoogle Scholar
  25. 25.
    Centore, P.: sRGB centroids for the ISCC-NBS colour system (2016)Google Scholar
  26. 26.
    Sivic, J., Zitnick, C.L., Szeliski, R.: Finding people in repeated shots of the same scene. BMVC 3, 909–918 (2006)Google Scholar
  27. 27.
  28. 28.
  29. 29.
    Sharma, G., Wu, W., Dalal, E.N.: The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30(1), 21–30 (2005)CrossRefGoogle Scholar
  30. 30.
    Van De Weijer, J., Schmid, C., Verbeek, J.: Learning color names from real-world images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Engineering and Applied ScienceAhmedabad UniversityAhmedabadIndia
  2. 2.Bhabha Atomic Research Centre (BARC)MumbaiIndia

Personalised recommendations