Skip to main content

Flow-Free Video Object Segmentation

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

Segmenting foreground object from a video is a challenging task because of large deformations of objects, occlusions, and background clutter. In this paper, we propose a frame-by-frame but computationally efficient approach for video object segmentation by clustering visually similar generic object segments throughout the video. Our algorithm segments object instances appearing in the video and then performs clustering in order to group visually similar segments into one cluster. Since the object that needs to be segmented appears in most part of the video, we can retrieve the foreground segments from the cluster having maximum number of segments. We then apply a track and fill approach in order to localize the object in the frames where the object segmentation framework fails to segment any object. Our algorithm performs comparably to the recent automatic methods for video object segmentation when benchmarked on DAVIS dataset while being computationally much faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1583–1590. IEEE (2011)

    Google Scholar 

  2. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_21

    Chapter  Google Scholar 

  3. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1777–1784 (2013)

    Google Scholar 

  4. Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 628–635 (2013)

    Google Scholar 

  5. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1995–2002. IEEE (2011)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  7. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 309–314. ACM (2004)

    Google Scholar 

  8. Kuettel, D., Ferrari, V.: Figure-ground segmentation by transferring window masks. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 558–565. IEEE (2012)

    Google Scholar 

  9. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2141–2148. IEEE (2010)

    Google Scholar 

  10. Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1202–1209. IEEE (2012)

    Google Scholar 

  11. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC, vol. 2, no. 7, p. 8 (2014)

    Google Scholar 

  12. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. In: ACM Transactions on Graphics (ToG), vol. 28, no. 3, p. 70. ACM (2009)

    Article  Google Scholar 

  13. Wang, T., Collomosse, J.: Probabilistic motion diffusion of labeling priors for coherent video segmentation. IEEE Trans. Multimed. 14(2), 389–400 (2012)

    Article  Google Scholar 

  14. Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1530–1537. IEEE (2009)

    Google Scholar 

  15. Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label MRF optimization. BMVC (2010)

    Google Scholar 

  16. Maerki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  17. Caelles, S., Maninis, K.-K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  19. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_42

    Chapter  Google Scholar 

  20. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5

    Chapter  Google Scholar 

  21. Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates. In: Advances in Neural Information Processing Systems, pp. 1990–1998 (2015)

    Google Scholar 

  22. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  23. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  24. Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)

    Google Scholar 

  25. Fragkiadaki, K., Zhang, G., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1846–1853. IEEE (2012)

    Google Scholar 

  26. Taylor, B., Karasev, V., Soatto, S.: Causal video object segmentation from persistence of occlusions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4268–4276 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Vora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vora, A., Raman, S. (2018). Flow-Free Video Object Segmentation. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics