Abstract
Super-resolving a noisy image is a challenging problem, and needs special care as compared to the conventional super resolution approaches, when the power of noise is unknown. In this scenario, we propose an approach to super-resolve single noisy image by minimizing nuclear norm in a virtual sparse domain that tunes with the power of noise via parameter learning. The approach minimizes nuclear norm to explore the inherent low-rank structure of visual data, and is further augmented with coarse-to-fine information by adaptively re-aligning the data along the principal components of a dictionary in virtual sparse domain. The experimental results demonstrate the robustness of our approach across different powers of noise.
Keywords
- Super resolution
- Noise
- Nuclear norm
- Virtual sparsity
- Dictionary
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
If we increase the area of the region to find similarity, a better result is expected in the cost of increased computational burden.
References
Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)
Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6(11), 1715–1726 (1989)
Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)
Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008
Mandal, S., Sao, A.K.: Employing structural and statistical information to learn dictionary(s) for single image super-resolution in sparse domain. Sig. Process. Image Commun. 48, 63–80 (2016)
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: IEEE International Conference on Computer Vision (ICCV), pp. 349–356, September 2009
Yang, C.-Y., Huang, J.-B., Yang, M.-H.: Exploiting self-similarities for single frame super-resolution. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 497–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_39
Vishnukumar, S., Nair, M.S., Wilscy, M.: Edge preserving single image super-resolution with improved visual quality. Sig. Process. 105, 283–297 (2014)
Mandal, S., Bhavsar, A., Sao, A.: Super-resolving a single intensity/range image via non-local means and sparse representation. In: Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), pp. 1–8, December 2014
Singh, A., Porikli, F., Ahuja, N.: Super-resolving noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2846–2853, June 2014
Mandal, S., Bhavsar, A., Sao, A.K.: Noise adaptive super-resolution from single image via non-local mean and sparse representation. Sig. Process. 132, 134–149 (2017)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)
Mandal, S., Bhavsar, A., Sao, A.K.: Depth map restoration from undersampled data. IEEE Trans. Image Process. 26(1), 119–134 (2017)
Mandal, S., Sao, A.: Edge preserving single image super resolution in sparse environment. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 967–971, September 2013
Yang, S., Wang, M., Chen, Y., Sun, Y.: Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans. Image Process. 21(9), 4016–4028 (2012)
Zhang, K., Tao, D., Gao, X., Li, X., Xiong, Z.: Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans. Image Process. 24(3), 846–861 (2015)
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206, June 2015
Wang, S., Zhang, L., Liang, Y.: Nonlocal spectral prior model for low-level vision. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 231–244. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_18
Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)
Dong, W., Shi, G., Li, X., Ma, Y., Huang, F.: Compressive sensing via nonlocal low-rank regularization. IEEE Trans. Image Process. 23(8), 3618–3632 (2014)
Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)
Cai, J.F., Cands, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Mandal, S., Rajagopalan, A.N. (2018). Single Noisy Image Super Resolution by Minimizing Nuclear Norm in Virtual Sparse Domain. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_15
Download citation
DOI: https://doi.org/10.1007/978-981-13-0020-2_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0019-6
Online ISBN: 978-981-13-0020-2
eBook Packages: Computer ScienceComputer Science (R0)