Eigenvalue Analysis with Hough Transform for Shape Representation and Classification

  • Bharathi Pilar
  • B. H. Shekar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 801)


In this work, we present eigenvalue based shape descriptor (EHough) which makes use of small eigenvalue and large eigenvalue along with Hough Transform to obtain the dominant features. The small eigenvalue and large eigenvalue are computed for each pixel associated with a shape boundary. In order to compute eigenvalues, we have taken every pixel associated with a shape boundary and its connected pixels within a window of certain size. Each pixel under processing is replaced by these eigenvalues which results in two matrices. These two matrices capture the structure of a shape. It is well known fact that the Hough transform is region based and is well suited under noise conditions. Hence, we perform Hough Transformation on these two eigenvalue based matrices to obtain compact representation of the shape and these features are matched using Euclidean Distance. We have performed decision level fusion of proposed approach with blockwise binary pattern (BBP) to enhance the classifier accuracy. Extensive experimental results on the publicly available shape databases namely, Kimia_99 and Kimia_216 and MPEG_7 data sets demonstrate the accuracy of the proposed method. The results of the experiments exhibit the success of proposed approach, in comparison with well-known algorithms from the literature.


Eigenvalue Hough Transform Blockwise binary pattern Earth movers distance Histogram matching Euclidean distance Decision level fusion Shape representation Shape classification 


  1. 1.
    Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn. 40(7), 1911–1920 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1003–1013 (2008)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Donoser, M., Liu, H., Latecki, L.J.: Efficient shape representation, matching, ranking and its applications. Pattern Recogn. Lett. 83(P3), 241–242 (2016)CrossRefGoogle Scholar
  4. 4.
    Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Process. 21(5), 2747–2757 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  6. 6.
    Chahooki, M.A.Z., Charkari, N.M.: Learning the shape manifold to improve object recognition. Mach. Vis. Appl. 24(1), 33–46 (2013)CrossRefGoogle Scholar
  7. 7.
    Chauhan, P.C., Prajapati, G.I.: 2D basic shape detection and recognition using hybrid neuro-fuzzy techniques: a survey. In: 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), pp. 1–5. IEEE (2015)Google Scholar
  8. 8.
    Daliri, M.R., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recogn. 41(5), 1782–1798 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)Google Scholar
  10. 10.
    Hasegawa, M., Tabbone, S.: Amplitude-only log radon transform for geometric invariant shape descriptor. Pattern Recogn. 47(2), 643–658 (2014)CrossRefGoogle Scholar
  11. 11.
    Hough, P.V.: Method and means for recognizing complex patterns. Technical report (1962)Google Scholar
  12. 12.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)CrossRefGoogle Scholar
  13. 13.
    Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 411–424. Springer, Heidelberg (2010). Scholar
  14. 14.
    McNeill, G., Vijayakumar, S.: Hierarchical Procrustes matching for shape retrieval. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 885–894. IEEE (2006)Google Scholar
  15. 15.
    Mukhopadhyay, P., Chaudhuri, B.B.: A survey of Hough Transform. Pattern Recogn. 48(3), 993–1010 (2015)CrossRefGoogle Scholar
  16. 16.
    Payet, N., Todorovic, S.: Matching hierarchies of deformable shapes. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 1–10. Springer, Heidelberg (2009). Scholar
  17. 17.
    Pilar, B., Shekar, B.H.: An integrated approach of radon transform and block-wise binary pattern for shape representation and classification. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1976–1982. IEEE (2016)Google Scholar
  18. 18.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116–125 (2003)CrossRefGoogle Scholar
  20. 20.
    Shekar, B.H., Pilar, B.: Shape representation and classification through pattern spectrum and local binary pattern a decision level fusion approach. In: 2014 Fifth International Conference on Signal and Image Processing (ICSIP), pp. 218–224. IEEE (2014)Google Scholar
  21. 21.
    Shekar, B.H., Pilar, B.: Discrete cosine transformation and height functions based shape representation and classification. Procedia Comput. Sci. 58, 714–722 (2015)CrossRefGoogle Scholar
  22. 22.
    Shekar, B.H., Pilar, B., Kittler, J.: An unification of inner distance shape context and local binary pattern for shape representation and classification. In: Proceedings of the 2nd International Conference on Perception and Machine Intelligence, pp. 46–55. ACM (2015)Google Scholar
  23. 23.
    Shen, W., Wang, X., Yao, C., Bai, X.: Shape recognition by combining contour and skeleton into a mid-level representation. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014. CCIS, vol. 483, pp. 391–400. Springer, Heidelberg (2014). Scholar
  24. 24.
    Shu, X., Wu, X.J.: A novel contour descriptor for 2D shape matching and its application to image retrieval. Image Vis. Comput. 29(4), 286–294 (2011)CrossRefGoogle Scholar
  25. 25.
    Temlyakov, A., Munsell, B.C., Waggoner, J.W., Wang, S.: Two perceptually motivated strategies for shape classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2289–2296. IEEE (2010)Google Scholar
  26. 26.
    Tu, Z., Yuille, A.L.: Shape matching and recognition – using generative models and informative features. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 195–209. Springer, Heidelberg (2004). Scholar
  27. 27.
    Wang, Z., Liang, M.: Locally affine invariant descriptors for shape matching and retrieval. IEEE Sig. Process. Lett. 17(9), 803–806 (2010)CrossRefGoogle Scholar
  28. 28.
    Wunsch, P., Laine, A.F.: Wavelet descriptors for multi-resolution recognition of hand printed characters. Pattern Recogn. 28(8), 1237–1249 (1995)CrossRefGoogle Scholar
  29. 29.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. 100(3), 269–281 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Sig. Process. Image Commun. 17(10), 825–848 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University CollegeMangaloreIndia
  2. 2.Mangalore UniversityMangaloreIndia

Personalised recommendations