Advertisement

Use of Hybrid Algorithm for Surface Roughness Optimization in Ti-6Al-4V Machining

  • Grynal D’Mello
  • P. Srinivasa Pai
  • Adarsh Rai
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 801)

Abstract

In this study, an effort has been made to develop a hybrid optimization algorithm based on Particle Swarm Optimization (PSO), a widely used optimization technique and Bat Algorithm (BA) a newly introduced metaheuristic algorithm. The machining parameters namely cutting speed (V c ), feed rate (f), depth of cut (d) along with tool wear (VB) and cutting tool vibrations (V y ) are the inputs. Further a Hybrid PSO-BA algorithm has been implemented in order to optimize surface roughness in High Speed Turning (HST) of Ti-6Al-4V. It was observed that the proposed hybrid PSO-BA algorithm increases the accuracy and convergence by 1.92% and 4.17% for R a and R t , which are surface roughness parameters compared to BA. Validation experiments have been performed based on PSO-BA predicted values. The experimental values are close to the predictive values with an error of 0.47% for R a and 1.159% for R t which is considerably better than that obtained from BA only.

Keywords

Ti-6Al-4V Surface roughness PSO BA Hybrid PSO-BA 

Notes

Acknowledgements

The authors grateful to AICTE, New Delhi, Ref. No.: 20/AICTE/RIFD/RPS(POLICY-1)/2012-13 for sponsoring this work under Research Promotion Scheme (RPS).

References

  1. 1.
    Benardos, P.G., Vosniakos, G.-C.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43(8), 833–844 (2003).  https://doi.org/10.1016/s0890-6955(03)00059-2CrossRefGoogle Scholar
  2. 2.
    Bandapalli, C., Sutaria, M.B., Bhatt, V.D.: High speed machining of Ti alloys a critical review. In: Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013) (2013)Google Scholar
  3. 3.
    Rahman, M., Wong, Y.S., Zareena, A.R.: Machinability of titanium alloys. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 46(1), 107–115 (2003).  https://doi.org/10.1299/jsmec.46.107CrossRefGoogle Scholar
  4. 4.
    Rahman, M., Wang, Z.G., Wong, Y.S.: A review on high-speed machining of titanium alloys. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 49(1), 11–20 (2006).  https://doi.org/10.1299/jsmec.49.11CrossRefGoogle Scholar
  5. 5.
    Sutter, G., List, G.: Very high speed cutting of Ti-6Al-4V titanium alloy change in morphology and mechanism of chip formation. Int. J. Mach. Tools Manuf. 66, 37–43 (2013).  https://doi.org/10.1016/j.ijmachtools.2012.11.004CrossRefGoogle Scholar
  6. 6.
    Ramesh, S., Karunamoorthy, L., Palanikumar, K.: Surface roughness analysis in machining of titanium alloy. Mater. Manuf. Process. 23(2), 174–181 (2008).  https://doi.org/10.1080/10426910701774700CrossRefGoogle Scholar
  7. 7.
    D’Mello, G., Pai, P.S., Puneet, N.P.: Surface roughness evaluation using cutting vibrations in high speed turning of Ti-6Al-4V-an experimental approach. Int. J. Mach. Mach. Mater. 18(3), 288–312 (2016).  https://doi.org/10.1504/ijmmm.2016.076281Google Scholar
  8. 8.
    Pontes, F.J., Ferreira, J.R., Silva, M.B., Paiva, A.P., Balestrassi, P.P.: Artificial neural networks for machining processes surface roughness modeling. Int. J. Adv. Manuf. Technol. 49(9), 879–902 (2010).  https://doi.org/10.1007/s00170-009-2456-2CrossRefGoogle Scholar
  9. 9.
    Asiltürk, I., Çunkaş, M.: Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst. Appl. 38(5), 5826–5832 (2011).  https://doi.org/10.1016/j.eswa.2010.11.041CrossRefGoogle Scholar
  10. 10.
    Ozel, T., Correia, A.E., Davim, J.P.: Neural network process modelling for turning of steel parts using conventional and wiper inserts. Int. J. Mater. Prod. Technol. 35(1–2), 246–258 (2009).  https://doi.org/10.1504/ijmpt.2009.02523CrossRefGoogle Scholar
  11. 11.
    Ho, S.Y., Lee, K.C., Chen, S.S., Ho, S.J.: Accurate modeling and prediction of surface roughness by computer vision in turning operations using an adaptive neuro-fuzzy inference system. Int. J. Mach. Tools Manuf. 42(13), 1441–1446 (2002).  https://doi.org/10.1016/s0890-6955(02)00078-0CrossRefGoogle Scholar
  12. 12.
    Rai, A., Kumar, N.S., Rao, B.S.: Fuzzy logic based prediction of performance and emission parameters of a LPG-diesel dual fuel engine. Procedia Eng. 38, 280–292 (2012).  https://doi.org/10.1016/j.proeng.2012.06.036CrossRefGoogle Scholar
  13. 13.
    Jiao, Y., Lei, S., Pei, Z.J., Lee, E.S.: Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations. Int. J. Mach. Tools Manuf. 44(15), 1643–1651 (2004).  https://doi.org/10.1016/j.ijmachtools.2004.06.004CrossRefGoogle Scholar
  14. 14.
    Mariajayaprakash, A., Senthilvelan, T., Gnanadass, R.: Optimization of process parameters through fuzzy logic and genetic algorithm–a case study in a process industry. Appl. Soft Comput. 30, 94–103 (2015).  https://doi.org/10.1016/j.asoc.2015.01.042CrossRefGoogle Scholar
  15. 15.
    Venkadesh, S., Hoogenboom, G., Potter, W., McClendon, R.: A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks. Appl. Soft Comput. 13(5), 2253–2260 (2013).  https://doi.org/10.1016/j.asoc.2013.02.003CrossRefGoogle Scholar
  16. 16.
    Chaquet, J.M., Carmona, E.J., Corral, R.: Using genetic algorithms to improve the thermodynamic efficiency of gas turbines designed by traditional methods. Appl. Soft Comput. 12(11), 3627–3635 (2012).  https://doi.org/10.1016/j.asoc.2012.06.009CrossRefGoogle Scholar
  17. 17.
    Torabi, S.A., Sahebjamnia, N., Mansouri, S.A., Bajestani, M.A.: A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. Appl. Soft Comput. 13(12), 4750–4762 (2013).  https://doi.org/10.1016/j.asoc.2013.07.029CrossRefGoogle Scholar
  18. 18.
    Gao, L., Huang, J., Li, X.: An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process. Appl. Soft Comput. 12(11), 3490–3499 (2012).  https://doi.org/10.1016/j.asoc.2012.06.007CrossRefGoogle Scholar
  19. 19.
    Han, F., Yao, H.F., Ling, Q.H.: An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 116, 87–93 (2013).  https://doi.org/10.1016/j.neucom.2011.12.062CrossRefGoogle Scholar
  20. 20.
    Ghaiebi, H., Solimanpur, M.: An ant algorithm for optimization of hole-making operations. Comput. Ind. Eng. 52(2), 308–319 (2007).  https://doi.org/10.1016/j.cie.2007.01.001CrossRefGoogle Scholar
  21. 21.
    Cheng, B., Wang, Q., Yang, S., Hu, X.: An improved ant colony optimization for scheduling identical parallel batching machines with arbitrary job sizes. Appl. Soft Comput. 13(2), 765–772 (2013).  https://doi.org/10.1016/j.asoc.2012.10.021CrossRefGoogle Scholar
  22. 22.
    Baskar, N., Asokan, P., Prabhaharan, G., Saravanan, R.: Optimization of machining parameters for milling operations using non-conventional methods. Int. J. Adv. Manuf. Technol. 25(11–12), 1078–1088 (2005).  https://doi.org/10.1007/s00170-003-1939-9CrossRefGoogle Scholar
  23. 23.
    Yusup, N., Sarkheyli, A., Zain, A.M., Hashim, S.Z.M., Ithnin, N.: Estimation of optimal machining control parameters using artificial bee colony. J. Intell. Manuf. 25(6), 1463–1472 (2014).  https://doi.org/10.1007/s10845-013-0753-yCrossRefGoogle Scholar
  24. 24.
    Das, M.K., Kumar, K., Barman, T.K., Sahoo, P.: Investigation on electrochemical machining of EN31 steel for optimization of MRR and surface roughness using artificial bee colony algorithm. Procedia Eng. 97, 1587–1596 (2014).  https://doi.org/10.1016/j.proeng.2014.12.309CrossRefGoogle Scholar
  25. 25.
    Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012).  https://doi.org/10.1016/j.eswa.2011.07.108CrossRefGoogle Scholar
  26. 26.
    Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainate, W., Pongcharoen, P.: Application of firefly algorithm and its parameter setting for job shop scheduling. J. Ind. Technol. 8(1), 49–58 (2012)Google Scholar
  27. 27.
    Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving nonconvex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012).  https://doi.org/10.1016/j.asoc.2011.09.017CrossRefGoogle Scholar
  28. 28.
    Raja, S.B., Baskar, N.: Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int. J. Adv. Manuf. Technol. 54(5–8), 445–463 (2011).  https://doi.org/10.1007/s00170-010-2958-yCrossRefGoogle Scholar
  29. 29.
    Tanweer, M.R., Suresh, S., Sundararajan, N.: Self-regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015).  https://doi.org/10.1016/j.ins.2014.09.053MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Escamilla-Salazar, I.G., Torres-Trevio, L.M., Gonzlez-Ortz, B., Zambrano, P.C.: Machining optimization using swarm intelligence in titanium (6Al 4 V) alloy. Int. J. Adv. Manuf. Technol. 67(1–4), 535–544 (2013).  https://doi.org/10.1007/s00170-012-4503-7CrossRefGoogle Scholar
  31. 31.
    Tanweer, M.R., Auditya, R., Suresh, S., Sundararajan, N., Srikanth, N.: Directionally driven self-regulating particle swarm optimization algorithm. Swarm Evol. Comput. 28, 98–116 (2016).  https://doi.org/10.1016/j.swevo.2016.01.006CrossRefGoogle Scholar
  32. 32.
    Tanweer, M.R., Suresh, S., Sundararajan, N.: Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf. Sci. 326, 1–24 (2016).  https://doi.org/10.1016/j.ins.2015.07.035CrossRefGoogle Scholar
  33. 33.
    Garg, S., Patra, K., Pal, S.K.: Particle swarm optimization of a neural network model in a machining process. Sadhana 39(3), 533–548 (2014).  https://doi.org/10.1007/s12046-014-0244-7MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5), 267–274 (2011).  https://doi.org/10.1504/ijbic.2011.042259CrossRefGoogle Scholar
  35. 35.
    Yang, X.S.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013).  https://doi.org/10.1504/ijbic.2013.055093CrossRefGoogle Scholar
  36. 36.
    Pan, T.-S., Dao, T.-K., Nguyen, T.-T., Chu, S.-C.: Hybrid particle swarm optimization with bat algorithm. In: Sun, H., Yang, C.-Y., Lin, C.-W., Pan, J.-S., Snasel, V., Abraham, A. (eds.) Genetic and Evolutionary Computing. AISC, vol. 329, pp. 37–47. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-12286-1_5Google Scholar
  37. 37.
    Yildiz, A.R., Ozturk, F.: Hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220(12), 2041–2053 (2006).  https://doi.org/10.1243/09544054jem570CrossRefGoogle Scholar
  38. 38.
    Costa, A., Celano, G., Fichera, S.: Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. Int. J. Adv. Manuf. Technol. 53(5), 421–433 (2011).  https://doi.org/10.1007/s00170-010-2861-6CrossRefGoogle Scholar
  39. 39.
    Li, X., Yin, M.: A particle swarm inspired cuckoo search algorithm for real parameter opt mization. Soft. Comput. 20(4), 1389–1413 (2016).  https://doi.org/10.1007/s00500-015-1594-8CrossRefGoogle Scholar
  40. 40.
    D’Mello, G., Pai, P.S., Puneet, N.P.: Optimization studies in high speed turning of Ti-6Al-4V. Appl. Soft Comput. 51, 105–115 (2017).  https://doi.org/10.1016/j.asoc.2016.12.003CrossRefGoogle Scholar
  41. 41.
    Karayel, D.: Prediction and control of surface roughness in CNC lathe using artificial neural network. J. Mater. Process. Technol. 209(7), 3125–3137 (2009).  https://doi.org/10.1016/j.jmatprotec.2008.07.023CrossRefGoogle Scholar
  42. 42.
    Kennedy, J., Russell, C.E.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  43. 43.
    Minitab, Inc.: MINITAB release 17: statistical software for windows. Minitab Inc., USA (2014)Google Scholar
  44. 44.
    MATLAB and Statistical Toolbox R2013a. The MathWorks Inc., Natick, MA (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.NMAM Institute of Technology, NitteKarkala Taluk, Udupi DistrictIndia

Personalised recommendations