Advertisement

Inter Intensity and Color Channel Co-occurrence Histogram for Color Texture Classification

  • S. Shivashankar
  • Madhuri R. Kagale
  • Prakash S. Hiremath
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 801)

Abstract

In this paper we propose a new method to analyze the color texture image based on inter intensity and color channel co-occurrence histogram, which characterizes the color texture more effectively. This corresponds to the relationships between intensity and color channel along with their neighboring pixels. The proposed color texture descriptor is experimented on VisTex texture dataset. The results are analyzed and compared with Local Binary Patterns (LBP) method and Histogram ratio method. The computational intelligence-based approach, namely, fuzzy classification is used for texture classification. The proposed descriptors achieve better classification results when compared with other two methods. The proposed color texture descriptors are sufficiently robust and precise to distinguish images of different textures even if the sample size is small. The results suggest that the proposed color texture descriptors have the potential for use in real-world applications involving recognition of patterns in digital images.

Keywords

Color texture Texture classification Inter co-occurrence histogram Color-channel Inter intensity and color 

Notes

Acknowledgments

We are thankful to referees for their helpful comments and suggestions.

References

  1. 1.
    Haralic, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Liu, J.: Texture classification using multiresolution Markov random field models. Pattern Recogn. Lett. 20(2), 171–182 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  5. 5.
    Wang, J.W., Chen, C.H., Chien, W.M., Tsai, C.M.: Texture classification using non-separable two-dimensional wavelets. Pattern Recogn. Lett. 19(13), 1225–1234 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Backes, A.R., Casanova, D., Bruno, O.M.: Color texture analysis based on fractal descriptors. Pattern Recogn. 45(5), 1984–1992 (2012)CrossRefGoogle Scholar
  7. 7.
    Paschos, G.: Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans. Image Process. 10(6), 932–937 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Drimbarean, A., Whelan, P.F.: Experiments in colour texture analysis. Pattern Recogn. Lett. 22(10), 1161–1167 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Maenpaa, T., Pietikainen, M.: Classification with color and texture: jointly or separately? Pattern Recogn. 37(8), 1629–1640 (2004)CrossRefGoogle Scholar
  10. 10.
    Paschos, G., Petrou, M.: Histogram ratio features for color texture classification. Pattern Recogn. Lett. 24(1–3), 309–314 (2003)CrossRefGoogle Scholar
  11. 11.
    Khan, F.S., Anwer, R.M., van de Weijer, J., Felsberg, M., Laaksonen, J.: Compact color-texture description for texture classification. Pattern Recogn. Lett. 51, 16–22 (2015)CrossRefGoogle Scholar
  12. 12.
    Bianconi, F., Harvey, R., Southam, P., Fernandez, A.: Theoretical and experimental comparision of different approaches for color texture classification. J. Electron. Imaging 20(4), 043006 (2011)CrossRefGoogle Scholar
  13. 13.
    Cusano, C., Napoletano, P., Schettini, R.: Combining multiple features for color texture classification. J. Electron. Imaging 25(6), 061410 (2016)CrossRefGoogle Scholar
  14. 14.
    Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 37(5), 965–976 (2004)CrossRefGoogle Scholar
  15. 15.
    Kukkonen, S., Kailviaiinen, H., Parkkinen, J.: Color features for quality control in ceramic tile industry. Opt. Eng. 40(2), 170–177 (2001)CrossRefGoogle Scholar
  16. 16.
    Paschos, G.: Fast color texture recognition using chromaticity moments. Pattern Recogn. Lett. 21(9), 837–841 (2000)CrossRefGoogle Scholar
  17. 17.
    Hoang, M.A., Geusebroek, J.M., Smeulders, A.W.: Color texture measurement and segmentation. Signal Process. 85(2), 265–275 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jain, A., Healey, G.: A multiscale representation including opponent color features for texture recognition. IEEE Trans. Image Process. 7(1), 124–128 (1998)CrossRefGoogle Scholar
  19. 19.
    Maenpaa, T., Pietikainen, M., Viertola, J.: Separating color and pattern information for color texture discrimination. In: Proceedings of the 16th IEEE International Conference on Pattern Recognition, vol. 1, pp. 668–671 (2002)Google Scholar
  20. 20.
    Rosenfeld, A., Wang, C.Y., Wu, A.Y.: Multispectral texture. IEEE Trans. Syst. Man Cybern. SMC-12(1), 79–84 (1982)Google Scholar
  21. 21.
    Vadivel, A., Sural, S., Majumdar, A.K.: An integrated color and intensity co-occurrence matrix. Pattern Recogn. Lett. 28(8), 974–983 (2007)CrossRefGoogle Scholar
  22. 22.
    VisTex: Vision texture database of MIT media lab (1995). http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
  23. 23.
    Cateni, S., Colla, V., Vannucci, M., Borselli, A.: Fuzzy inference systems applied to image classification in the industrial field. In: Fuzzy Inference System-Theory and Applications. InTech (2012)Google Scholar
  24. 24.
    Bezdek, J.C.: Computing with uncertainty. IEEE Commun. Mag. 30(9), 24–36 (1992)CrossRefGoogle Scholar
  25. 25.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Cambridge (2013)zbMATHGoogle Scholar
  26. 26.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1994)zbMATHGoogle Scholar
  27. 27.
    Wang, F.: Fuzzy supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 28(2), 194–201 (1990)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 15(4), 580–585 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Karnatak UniversityDharwadIndia
  2. 2.KLE Technological University, BVBCETHubballiIndia

Personalised recommendations