Skip to main content

Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess

  • Chapter
  • First Online:
Plant Nutrients and Abiotic Stress Tolerance

Abstract

Phosphorus (P) is an essential element determining plants’ growth and productivity. Due to soil fixation of P, its availability in soil is rarely sufficient for optimum growth and development of plants. The uptake of P from soil followed by its long-distance transport and compartmentation in plants is outlined in this chapter. In addition, we briefly discuss the importance of P as a structural component of nucleic acids, sugars and lipids. Furthermore, the role of P in plant’s developmental processes at both cellular and whole plant level, viz. seed germination, seedling establishment, root, shoot, flower and seed development, photosynthesis, respiration and nitrogen fixation, has been discussed. Under P-deficient condition, plants undergo various morphological, physiological and biochemical adaptations, while P toxicity is rarely reported. We also summarize the antagonistic and synergistic interaction of P with other macro- and micronutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant Cell Environ 27:887–895

    Article  CAS  Google Scholar 

  • Aulakh MS, Pasricha NS (1977) Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus L.) Plant Soil 47:341–350

    Article  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldwin JC, Athikkattuvalasu SK, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhagwat AS (1981) Activation of spinach ribulose 1,5-bisphosphate carboxylase by inorganic phosphate. Plant Sci Lett 23:197–206

    Article  CAS  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bonetti R, Montanheiro M, Saito S (1984) The effects of phosphate and soil moisture on the nodulation and growth of Phaseolus vulgaris. J Agric Sci 103:95–102

    Article  Google Scholar 

  • Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S (2011) Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann Bot 107:243–254

    Article  PubMed  CAS  Google Scholar 

  • Charlton WA (1996) Lateral root initiation. In: Waisel Y, Eshel A, Kfkafa U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 149–173

    Google Scholar 

  • Chatterjee C, Sinha P, Agarwala SC (1990) Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Can J Plant Sci 70:455–460

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen R, Song S, Li X, Liu H, Huang D (2013) Phosphorus deficiency restricts plant growth but induces pigment formation in the flower stalk of Chinese kale. Hortic Environ Biotechnol 54:243–248

    Article  CAS  Google Scholar 

  • Chowdhury SZ, Sobahan MA, Shamim AHM, Akter N, Hossain MM (2015) Interaction effect of phosphorus and boron on yield and quality of lettuce. Azarian J Agric 2:147–154

    Google Scholar 

  • Comerford NB (1998) Soil phosphorus bioavailability. In: Lynch JP, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, pp 136–147

    Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • De Iorio AF, Gorgoschide L, Rendina A, Barros MJ (1996) Effect of phosphorus, copper, and zinc addition on the phosphorus/copper and phosphorus/zinc interaction in lettuce. J Plant Nutr 19:481–491

    Article  Google Scholar 

  • Devaiah B, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong B, Rengel Z, Delhaize E (1998) Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta 205:251–256

    Article  PubMed  CAS  Google Scholar 

  • Drissi S, Houssa AA, Bamouh A, Coquant JM, Benbella M (2015) Effect of zinc-phosphorus interaction on corn silage grown on sandy soil. Agriculture 5:1047–1059

    Article  CAS  Google Scholar 

  • Duff SMG, Lefebvre DD, Plaxton WC (1989) Purification and characterization of a phosphoenolpyruvate phosphatase from Brassica nigra suspension cells. Plant Physiol 90:734–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duff SM, Plaxton WC, Lefebvre DD (1991) Phosphate-starvation response in plant cells: de novo synthesis and degradation of acid phosphatases. PNAS, USA 88:9538–9542

    Article  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  CAS  PubMed  Google Scholar 

  • Flugge UI, Heldt HW (1984) The phosphate-triose phosphate-phosphoglycerate translocator of the chloroplast. Trends Biochem Sci 9:530–533

    Article  Google Scholar 

  • Furihata T, Suzuki M, Sakurai H (1992) Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol 33:1151–1157

    CAS  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Article  PubMed  CAS  Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  PubMed  CAS  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    Article  CAS  Google Scholar 

  • Gniazdowska A, Mikulska M, Rychter AM (1998) Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biol Plant 41:217–226

    Article  CAS  Google Scholar 

  • Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol 87:711–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo FQ, Wand R, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNTR1.1 (CHL1) is regulated by auxin in both shoots and roots. J Exp Bot 53:835–844

    Article  PubMed  CAS  Google Scholar 

  • Halsted M, Lynch J (1996) Phosphorus responses of C-3 and C-4 species. J Exp Bot 47:497–505

    Article  CAS  Google Scholar 

  • Hasan MM, Hasan MM, da Silva JAT, Li X (2016) Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 21:1–19

    Article  CAS  Google Scholar 

  • Heber U, Heldt HW (1981) The chloroplast envelope: structure, function, and role in leaf metabolism. Annu Rev Plant Physiol 32:139–168

    Article  CAS  Google Scholar 

  • Heldt HW, Chon CJ, Lorimer H (1978) Phosphate requirement for the light activation of ribulose-1,5-biphosphate carboxylase in intact spinach chloroplasts. FEBS Lett 92:234–240

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  CAS  PubMed  Google Scholar 

  • Horton P (1989) Interactions between electron transport and carbon assimilation: regulation of light harvesting. In: Briggs WR (ed) Photosynthesis, vol 8. Alan R Liss, New York, pp 393–406

    Google Scholar 

  • Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol 124:415–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CY, Shirley N, Genc Y, Shi B, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiol 156:1217–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber SC, Huber JL (1992) Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol 99:1275–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Jahn T, Baluska F, Michalke W, Harper JF, Volkmann D (1998) A membrane H+-ATPase in the root apex: evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiol Plant 104:311–316

    Article  CAS  Google Scholar 

  • Jakobsen I (1985) The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Plant Physiol 64:190–196

    Article  CAS  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganism. In: Buenemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, New York, pp 169–198

    Chapter  Google Scholar 

  • Jungk A (2001) Root hairs and acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Lal MK (2015) Effect of high [CO2] on phosphorus efficiency in wheat grown under phosphorus stress with different sulphur levels. Dissertation, Indian Agricultural Research Institute

    Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Huang TK, Leong SJ, Chiou TJ (2014) Long-distance call from phosphate: systemic regulation of phosphate starvation responses. J Exp Bot 65:1817–1827

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010a) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Hu C, Hu X, Nie Z, Sun X, Tan Q, Hu H (2010b) Interaction of molybdenum and phosphorus supply on uptake and translocation of phosphorus and molybdenum by Brassica napus. J Plant Nutr 33:1751–1760

    Article  CAS  Google Scholar 

  • Liu XM, Zhao XL, Zhang LJ, Xiao K (2013) TaPht1;4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol 40:329–341

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging–an architectural adaptation of plants to low phosphorus. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Ma Q, Longnecker N, Atkins C (2002) Varying phosphorus supply and development, growth and seed yield in narrow-leafed lupin. Plant Soil 239:79–85

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Miao J, Sun J, Liu D, Li B, Zhang A, Li Z, Tong Y (2009) Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics 36:455–466

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS, USA 102:7760–7765

    Article  CAS  Google Scholar 

  • Nacry P, Canivenc G, Muller B (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nadeem M, Mollier A, Morel C, Vives A, Prud'homme L, Pellerin S (2011) Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil 346:231–244

    Article  CAS  Google Scholar 

  • Nadeem M, Mollier A, Morel C, Vives A, Prud'homme L, Pellerin S (2012) Seed phosphorus remobilization is not a major limiting step for phosphorus nutrition during early growth of maize. J Plant Nutr Soil Sci 175:805–809

    Article  CAS  Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. PNAS, USA 106:20978–20983

    Article  Google Scholar 

  • Neumann G, Römheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half, 3rd edn. Marcel Dekker, New York, pp 617–649

    Chapter  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Romheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Nielsen TH, Krapp A, Roper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21:443–454

    Article  CAS  Google Scholar 

  • Parets-Soler A, Pardo JM, Serrano R (1990) Immunocytolocalization of plasma membrane H1-ATPase. Plant Physiol 93:1654–1658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pariasca-Tanaka J, Vandamme E, Mori A, Segda Z, Saito K, Rose TJ, Wissuwa M (2015) Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? Plant Soil 392:253–266

    Article  CAS  Google Scholar 

  • Peaslee DE (1977) Effects of nitrogen, phosphorus, and potassium nutrition on yield, rates of kernel growth and grain filling periods of two corn hybrids. Commun Soil Sci Plant Anal 8:373–389

    Article  CAS  Google Scholar 

  • Péret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  PubMed  CAS  Google Scholar 

  • Pettersson G, Ryde-Pettersson U (1989) Metabolites controlling the rate of starch synthesis in chloroplast of C3 plants. Eur J Biochem 179:169–172

    Article  PubMed  CAS  Google Scholar 

  • Preiss J (1994) Regulation of the C3 reductive cycle and carbohydrate synthesis. In: Tolbert NE (ed) Regulation of atmospheric CO2 and O2 by photosynthetic carbon metabolism. Oxford University Press, New York, pp 93–102

    Google Scholar 

  • Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. Adv Bot Res 20:43–123

    Article  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  PubMed  CAS  Google Scholar 

  • Razaq M, Zhang P, Shen H-l, Salahuddin (2017) Influence of nitrogen and phosphorus on the growth and root morphology of Acer mono. PLoS One 12:1–13

    Article  CAS  Google Scholar 

  • Reid RJ, Mimura T, Ohsumi Y, Walker NA, Smith FA (2000) Phosphate transport in Chara: membrane transport via Na/Pi cotransport. Plant Cell Environ 23:223–228

    Article  CAS  Google Scholar 

  • Robinson SP, Giersch C (1987) Inorganic-phosphate concentration in the stroma of isolated-chloroplasts and its influence on photosynthesis. Aust J Plant Physiol 14:451–462

    Article  CAS  Google Scholar 

  • Rodriguez D, Zubillaga MM, Ploschuk EL, Keltjens WG, Goudriaan J, Lavado RS (1998) Leaf area expansion and assimilate production in sunflower (Helianthus annuus L.) growing under low phosphorus conditions. Plant Soil 202:133–147

    Article  CAS  Google Scholar 

  • Rose TJ, Pariasca-Tanaka J, Rose MT, Mori A, Wissuwa M (2012) Seeds of doubt: re-assessing the impact of grain P concentrations on seedling vigor. J Plant Nutr Soil Sci 175:799–804

    Article  CAS  Google Scholar 

  • Rychter AM, Mikulska M (1990) The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiol Plant 79:663–667

    Article  PubMed  CAS  Google Scholar 

  • Rychter AM, Rao RM (2005) Role of phosphorus in photosynthetic carbon metabolism. In: Pessarakali M (ed) Handbook of photosynthesis, 2nd edn. CRC Press, Boca Raton, pp 1–27

    Google Scholar 

  • Rychter AM, Chauveau M, Bomsel JL, Lance C (1992) The effect of phosphate deficiency on mitochondrial activity and adenylate levels in bean roots. Physiol Plant 84:80–86

    Article  CAS  Google Scholar 

  • Sakano K (1990) Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don. Plant Physiol 93:479–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanyal SK, De Datta SK (1991) Chemistry of phosphorus transformations in soil. Adv Soil Sci 16:1–120

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlegel A, Bond HD (2017) Long-term nitrogen and phosphorus fertilization of irrigated grain sorghum. Kansas Agric Exp Station Res Rep 3:1–8

    Google Scholar 

  • Shen J, Li H, Neumann G, Zhang F (2005) Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci 168:837–845

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh B, Pandey R (2003) Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. J Plant Nutr 26:2391–2401

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res Int 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier and Academic, New York, p 800

    Google Scholar 

  • Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of phosphate and sulfate transport in plants. Biochim Biophys Acta 1465:236–245

    Article  PubMed  CAS  Google Scholar 

  • Soares MM, Sediyama T, Neves JCL, dos Santos Junior HC, da Silva LJ (2016) Nodulation, growth and soybean yield in response to seed coating and split application of phosphorus. J Seed Sci 38:030–040

    Article  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H1-ATPase. Plant Physiol 136:2475–2482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stitt M, Wirtz W, Heldt HW (1983) Regulation of sucrose synthesis by cytoplasmic fructose bisphosphatase and sucrose phosphate synthase during photosynthesis in varying light and carbon-dioxide. Plant Physiol 72:767–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF (2015) WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167:1579–1591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki Y, Kihara-Doi T, Kawazu T, Miyake C, Makino A (2010) Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environ 33:1314–1323

    PubMed  CAS  Google Scholar 

  • Uhde-Stone C, Gilbert G, Jonhson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    Article  CAS  Google Scholar 

  • Ullrich C, Novacky A (1990) Extra- and intracellular pH and membrane potential changes induced by K+, Cl, H2PO- and NO- uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 94:1561–1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Usherwood NR, Segars WI (2001) Nitrogen interactions with phosphorus and potassium for optimum crop yield, nitrogen use effectiveness and environmental stewardship. Sci World 1:57–60

    Article  Google Scholar 

  • Vance CP (2010) Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154:582–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Vengavasi K, Pandey R (2016a) Root acidification, a rapid method of screening soybean genotypes for low-phosphorus stress. Indian J Genet 76:213–216

    Google Scholar 

  • Vengavasi K, Pandey R (2016b) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67:1–14

    Article  CAS  Google Scholar 

  • Vengavasi K, Kumar A, Pandey R (2016) Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress. Indian J Plant Physiol 21:179–188

    Article  CAS  Google Scholar 

  • Wang BL, Shen JB, Zhang WH, Zhang FS, Neumann G (2007) Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol 176:581–589

    Article  PubMed  CAS  Google Scholar 

  • Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y, Allan DL, Vance CP, Shen JB (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. PNAS, USA 111:14953–14958

    Article  CAS  Google Scholar 

  • White PJ, Veneklaas EJ (2012) Nature and nurture: the importance of seed phosphorus content. Plant Soil 357:1–8

    Article  CAS  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan F, Zhu Y, Mueller C, Schubert S (2002) Adaptation of H+ pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

  • Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu YG, Smith SE (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant Soil 231:105–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, H., Vandana, Sharma, S., Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_7

Download citation

Publish with us

Policies and ethics