Advertisement

Stable EEG Spatiospectral Sources Using Relative Power as Group-ICA Input

  • René Labounek
  • David A. Bridwell
  • Radek Mareček
  • Martin Lamoš
  • Michal Mikl
  • Milan Brázdil
  • Jiří Jan
  • Petr Hluštík
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 68/2)

Abstract

Within the last decade, various blind source separation algorithms (BSS) isolating distinct EEG oscillations were derived and implemented. Group Independent Component Analysis (group-ICA) is a promising tool for decomposing spatiospectral EEG maps across multiple subjects. However, researchers are faced with many preprocessing options prior to performing group-ICA, which potentially influences the results. To examine the influence of preprocessing steps, within this article we compare results derived from group-ICA using the absolute power of spatiospectral maps and the relative power of spatiospectral maps. Within a previous study, we used K-means clustering to demonstrate group-ICA of absolute power spatiospectral maps generates sources which are stable across different paradigms (i.e. resting-state, semantic decision, visual oddball) Within the current study, we compare these maps with those obtained using relative power of spatiospectral maps as input to group-ICA. We find that relative EEG power contains 10 stable spatiospectral patterns which were similar to those observed using absolute power as inputs. Interestingly, relative power revealed two γ-band (20–40 Hz) patterns which were present across 3 paradigms, but not present using absolute power. This finding suggests that relative power potentially emphasizes low energy signals which are obscured by the high energy low frequency which dominates absolute power measures.

Keywords

EEG Spatiospectral ICA Multisubject blind source separation 

Notes

Acknowledgements

This research was supported Czech Health Research Council grants n. NV16-30210A and NV17-29452A. Computational resources were provided by the MetaCentrum under the program LM2010005 and the CERIT-SC under the program Centre CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations, Reg. no. CZ.1.05/3.2.00/08.0144.

References

  1. 1.
    Buzsaki, G.: Rhythms of the Brain. Oxford University Press, (2006).Google Scholar
  2. 2.
    Huster, R. J., Raud, L.: A Tutorial Review on Multi-subject Decomposition of EEG. Brain Topogr. 31(1), 3–16, (2018).  https://doi.org/10.1007/s10548-017-0603-x.
  3. 3.
    Bridwell, D. A., Wu, L., Eichele, T., Calhoun, V. D.: The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage 69, 101–11, (2013).  https://doi.org/10.1016/j.neuroimage.2012.12.024.
  4. 4.
    Labounek, R., Bridwell, D. A., Mareček, R., et al.: Stable scalp EEG spatiospectral patterns across paradigms estimated by group ICA. Brain Topogr. 31(1), 76–89 (2018).  https://doi.org/10.1007/s10548-017-0585-8.
  5. 5.
    Labounek, R., Janeček, D., Mareček, R., et al.: Generalized EEG-fMRI spectral and spatiospectral heuristic models. In: 13th International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Prague, pp. 767–770, (2016).  https://doi.org/10.1109/isbi.2016.7493379.
  6. 6.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29, 169–95, (1999).  https://doi.org/10.1016/s0165-0173(98)00056-3.
  7. 7.
    Kilner, J. M., Mattout, J., Henson, R., Friston, K. J.: Hemodynamic correlates of EEG: a heuristic. Neuroimage 28, 280–286, (2005).  https://doi.org/10.1016/j.neuroimage.2005.06.008.
  8. 8.
    Labounek, R., Lamoš, M., Mareček, R., et al.: Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG. Journal of Neuroscience Methods 245, 125–136, (2015).  https://doi.org/10.1016/j.jneumeth.2015.02.016.
  9. 9.
    Allen, P. J., Josephs, O., Turner, R.: A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12,230–239, (2000).  https://doi.org/10.1006/nimg.2000.0599.
  10. 10.
    Allen, P. J., Polizzi, G., Krakow, K., et al.: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8, 229–239, (1998).  https://doi.org/10.1006/nimg.1998.0361.
  11. 11.
    Pascual-Marqui, R. D., Michel, C. M., Lehmann, D.: Segmentation of brain electrical activity into microstates: model estimation and validation. Trans Biomed Eng IEEE 42, 658–665, (1995).  https://doi.org/10.1109/10.391164.
  12. 12.
    Himberg, J., Hyvärinen, A., Esposito, F.: Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22, 1214–1222, (2004).  https://doi.org/10.1016/j.neuroimage.2004.03.027.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • René Labounek
    • 1
    • 2
  • David A. Bridwell
    • 3
  • Radek Mareček
    • 4
  • Martin Lamoš
    • 4
  • Michal Mikl
    • 4
  • Milan Brázdil
    • 4
  • Jiří Jan
    • 5
  • Petr Hluštík
    • 1
    • 2
  1. 1.University Hospital OlomoucOlomoucCzech Republic
  2. 2.Palacký University OlomoucOlomoucCzech Republic
  3. 3.Mind Research NetworkAlbuquerqueUSA
  4. 4.Central European Institute of TechnologyBrnoCzech Republic
  5. 5.Brno University of TechnologyBrnoCzech Republic

Personalised recommendations