Advertisement

The Role of Beneficial Elements in Triggering Adaptive Responses to Environmental Stressors and Improving Plant Performance

  • Fernando Carlos Gómez-Merino
  • Libia Iris Trejo-Téllez
Chapter

Abstract

Aluminum (Al), cerium (Ce), cobalt (Co), iodine (I), lanthanum (La), sodium (Na), selenium (Se), silicon (Si), titanium (Ti), and vanadium (V) are emerging as novel biostimulants that may enhance crop productivity and nutritional quality while improving responses to environmental stimuli and stressors in some plant species. These beneficial elements are not essential for most plants, but when supplied at low dosages, they help improve their growth, development, and yield quality by stimulating different molecular, biochemical, and physiological mechanisms triggering adaptive responses to challenging environments. When plants are exposed to environmental cues such as drought, heavy metal toxicity, low temperatures, saline soils, pest insects, or pathogens, beneficial elements may induce tolerance, resistance, or defense responses that allow plants to achieve acclimation to such stressors. Enhancement of nutrient uptake, synthesis of antioxidants and osmoprotectants, stimulation of secondary metabolism and signaling cascades, and reduction of senescence are among the responses boosted by beneficial elements when applied at low dosages. Nevertheless, beneficial elements may trigger hormesis in plants, a biphasic dose response with at low-dose stimulation or beneficial effect and a high-dose inhibitory or toxic effect. Thus, when properly applied, beneficial elements may have great potential to cope with some of the most daunting challenges facing humanity, such as climate change and food production under restrictive conditions for the growing human population. In this chapter, we mainly focus on the positive effects of beneficial elements on plant performance in restrictive environments and discuss some of the challenges of using these elements as biostimulants.

Keywords

Climate change Environmental stressors Plant nutrition Nonessential elements Biostimulants Hormesis Innovation Beneficial elements 

References

  1. Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243.  https://doi.org/10.3389/fpls.2016.00243CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdul Qados AMS (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J Saudi Soc Agric Sci 10:7–15.  https://doi.org/10.1016/j.jssas.2010.06.002CrossRefGoogle Scholar
  3. Acero LH, Tuy FS, Virgino JS (2016) Potassium aluminum sulfate solution on the vase life of sampaguita (Jasminum sambac) flowers. J Med Bioeng 5:33–36.  https://doi.org/10.12720/jomb.5.1.33-36CrossRefGoogle Scholar
  4. Akoumianaki-Ioannidou A, Barouchas PE, Kyramariou A et al (2015) Effect of vanadium on dry matter and nutrient concentration in pennyroyal (Mentha pulegium L.) Bull UASVM Hortic 72:295–298.  https://doi.org/10.15835/buasvmcn-hort:11348CrossRefGoogle Scholar
  5. Alcántar-González G, Trejo-Téllez LI, Fernández-Pavía L et al (2016) Elementos esenciales. In: Alcántar-González G, Trejo-Téllez LI, Gómez-Merino FC (eds) Nutrición de cultivos, 2nd edn. Colegio de Postgraduados, Mexico City, pp 23–55Google Scholar
  6. Amenta V, Aschberger K, Arena M et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476.  https://doi.org/10.1016/j.yrtph.2015.06.016CrossRefPubMedGoogle Scholar
  7. Andersen CP, King G, Plocher M et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:1–7.  https://doi.org/10.1002/etc.3374CrossRefGoogle Scholar
  8. Antal DS, Dehelean CA, Canciu CM et al (2009) Vanadium in medicinal plants: new data on the occurrence of an element both essential and toxic to plants and man. An Univ Oradea Fasc Biol 2:5–10Google Scholar
  9. Ashworth DJ (2009) Transfers of iodine in the soil–plant–air system: solid-liquid partitioning, migration, plant uptake and volatilization. In: Preedy VR, Burrow GN, Watson R (eds) Comprehensive handbook of iodine. Oxford Academic Press, San Diego, pp 107–118CrossRefGoogle Scholar
  10. Aslmoshtaghi E, Jafari M, Rahemi M (2014) Effects of daffodil flowers and cobalt chloride on vase life of cut rose. J Chem Health Risks 4:1–6Google Scholar
  11. Balakhnina T, Borkowska A (2013) Effects of silicon on plant resistance to environmental stresses: review. Int Agrophys 27:225–232.  https://doi.org/10.2478/v10247-012-0089-4CrossRefGoogle Scholar
  12. Barbieri APP, Espíndola GMC, de Menezes NL et al (2013) Lettuce seeds treated with cerium and lanthanum aqueous solutions. Pesq Agropec Trop 43:104–109.  https://doi.org/10.1590/S1983-40632013000100013CrossRefGoogle Scholar
  13. Basaki T, Faraji S, Nejat MA, Azimi MH (2013) The effect of chemical treatments on cut flower longevity of Rosa hybrid cultivar Maroussia. Int J Agron Plant Prod 4:450–453Google Scholar
  14. Baxter IR, Vitek O, Lahner B et al (2008) The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc Natl Acad Sci U S A 105:12081–12086.  https://doi.org/10.1073/pnas.0804175105CrossRefPubMedPubMedCentralGoogle Scholar
  15. Blasco B, Rios JJ, Cervilla LM et al (2011) Iodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativa L.) Soil Plant Sci 61:378–383.  https://doi.org/10.1080/09064710.2010.492782CrossRefGoogle Scholar
  16. Borda OA, Barón FH, Gómez MI (2007) Silicon as a beneficial element in forage oat (Avena sativa L.): physiological responses of growth and management. Agron Colomb 25:273–279Google Scholar
  17. Caffagni A, Arru L, Meriggi P et al (2011) Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Commun Soil Sci Plant Anal 42:706–718.  https://doi.org/10.1080/00103624.2011.550372CrossRefGoogle Scholar
  18. Caffagni A, Pecchioni N, Meriggi P et al (2012) Iodine uptake and distribution in horticultural and fruit tree species. Ital J Agron 7:229–236.  https://doi.org/10.4081/ija.2012.e32CrossRefGoogle Scholar
  19. Carvajal M, Alcaraz CF (1998) Why titanium is a beneficial element for plants. J Plant Nutr 21:655–664.  https://doi.org/10.1080/01904169809365433CrossRefGoogle Scholar
  20. Chaturvedi N, Gannavarapu R, Dhal NK (2014) Effect of lanthanum on the growth and physiological activities of Zea mays, Vigna radiata and Vigna mungo. Int J Environ Sci 4:653–659.  https://doi.org/10.6088/ijes.2014040404505CrossRefGoogle Scholar
  21. Chen WJ, Tao Y, Gu YH et al (2001) Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biol Trace Elem Res 79:169–176.  https://doi.org/10.1385/BTER:79:2:169CrossRefPubMedGoogle Scholar
  22. Chen Z, Watanabe T, Shinano T et al (2009) Rapid characterization of plant mutants with altered ion-profile: a case study using Lotus japonicus. New Phytol 181:795–801.  https://doi.org/10.1111/j.1469-8137.2008.02730.xCrossRefPubMedGoogle Scholar
  23. Conti L, Nelis S, Zhang C et al (2014) Small ubiquitin-like modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellins. Dev Cell 28:102–110.  https://doi.org/10.1016/j.devcel.2013.12.004CrossRefPubMedGoogle Scholar
  24. de la Cruz-Guzmán GH, Arriaga-Frías A, Mandujano-Piña M et al (2007) Effect of three longevity preservatives on post-harvest life of Rosa cv. Royalty. Rev Chapingo Ser Hortic 13:109–113CrossRefGoogle Scholar
  25. de Oliveira C, Ramos SJ, Siqueira JO et al (2015) Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol Environ Saf 122:136–144.  https://doi.org/10.1016/j.ecoenv.2015.07.020CrossRefPubMedGoogle Scholar
  26. Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot 101:971–982.  https://doi.org/10.1093/aob/mcn021CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dong B, Sang WL, Jiang X et al (2002) Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.) Chemosphere 47:87–92.  https://doi.org/10.1016/S0045-6535(01)00210-7CrossRefPubMedGoogle Scholar
  28. Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20.  https://doi.org/10.3389/fenvs.2016.00020CrossRefGoogle Scholar
  29. Furcal-Beriguete P, Herrera-Barrantes A (2013) Efecto del silicio y plaguicidas en la fertilidad del suelo y rendimiento del arroz. Agron Mesoam 24:365–378CrossRefGoogle Scholar
  30. Gad N (2006) Increasing the efficiency of nitrogen fertilization through cobalt application to pea plants. Res J Agric Biol Sci 2:433–442Google Scholar
  31. Gad N (2012) Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl Sci J 20:359–367.  https://doi.org/10.5829/idosi.wasj.2012.20.03.2819CrossRefGoogle Scholar
  32. García-Jiménez A, Gómez-Merino FC, Tejeda-Sartorius O, Trejo-Téllez LI (2017) Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino acids, and proteins. Front Plant Sci 8:308.  https://doi.org/10.3389/fpls.2017.00308CrossRefPubMedPubMedCentralGoogle Scholar
  33. Germ M, Stibilj V, Kreft I (2007) Metabolic importance of selenium for plants. Eur J Plant Sci Biotech 1:91–97Google Scholar
  34. Gupta N, Bajpai MS, Majumdar RS et al (2015) Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv Biol Res 9:40–48.  https://doi.org/10.5829/idosi.abr.2015.9.1.9183CrossRefGoogle Scholar
  35. Hajiboland R, Keivanfar N (2012) Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus L.) plants. Acta Agric Slov 99:13–19.  https://doi.org/10.2478/v10014-012-0002-7CrossRefGoogle Scholar
  36. Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200.  https://doi.org/10.1023/A:1026512921026CrossRefGoogle Scholar
  37. Hawrylak-Nowak B (2008) Effect of selenium on selected macronutrients in maize plants. J Elem 13:513–519Google Scholar
  38. Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70:149–157.  https://doi.org/10.1007/s10725-013-9788-5CrossRefGoogle Scholar
  39. Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18.  https://doi.org/10.1016/j.scienta.2015.12.002CrossRefGoogle Scholar
  40. Huang Z, Chen G, Du J (2003) Influence of lanthanum on the uptake of trace elements in cucumber plant. Biol Trace Elem Res 95:185–195.  https://doi.org/10.1385/BTER:95:2:185CrossRefPubMedGoogle Scholar
  41. Imani MH, Hashemabadi D, Kaviani B et al (2012) Effect of sodium benzoate on longevity and ethylene production in cut rose (Rosa hybrida L. cv. Avalanche). Eur J Exp Biol 2:2485–2488Google Scholar
  42. Jaberzadeh A, Moaveni P, Tohidimoghadam HR et al (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hortic Agrobo 41:201–207CrossRefGoogle Scholar
  43. Jamali B, Rahemi M (2011) Carnation flowers senescence as influenced by nickel, cobalt and silicon. J Biol Environ Sci 5:147–152Google Scholar
  44. Jayakumar K, Rajesh M, Baskaran L, Vijayarengan P (2013) Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int J Food Nutr Saf 4:62–69Google Scholar
  45. Jian C, Zu C, Lu D et al (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039.  https://doi.org/10.1038/srep42039CrossRefGoogle Scholar
  46. Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng App Sci 2:7–10Google Scholar
  47. Jowkar MM, Khalighi A, Kafi M, Hasanzadeh N (2012) Evaluation of aluminum sulfate as vase solution biocide on postharvest microbial and physiological properties of ‘Cherry Brandy’ rose. Acta Hortic 1012:1132–1144.  https://doi.org/10.17660/ActaHortic.2013.1012.83CrossRefGoogle Scholar
  48. Kazemi M (2012) Effect of cobalt, silicon, acetylsalicylic acid and sucrose as novel agents to improve vase-life of Argyranthemum flowers. Trends Appl Sci Res 7:579–583.  https://doi.org/10.3923/tasr.2012CrossRefGoogle Scholar
  49. Kazemi M, Ameri A (2012) Effect of Ni, Co, SA and sucrose on extending the vase-life of lilycut flower. Iranica J Energy Environ 3:162–166.  https://doi.org/10.5829/idosi.ijee.2012.03.02.0258CrossRefGoogle Scholar
  50. Kazemi M, GHolami M, Bahmanipour F (2012) Effect of silicon and acetylsalicylic acid on antioxidant activity, membrane stability and ACC-oxidase activity in relation to vase life of carnation cut flowers. Biotechnology 11:87–90.  https://doi.org/10.3923/biotech.2012.87.90CrossRefGoogle Scholar
  51. KeLing H, Ling Z, JiTao W et al (2013) Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc Bot Pol 82:193–197.  https://doi.org/10.5586/asbp.2013.023CrossRefGoogle Scholar
  52. Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J Exp Bot 51:1057–1066.  https://doi.org/10.1093/jexbot/51.347.1057CrossRefPubMedGoogle Scholar
  53. Kim YH, Khan AL, Waqas M et al (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Plant Growth Regul 33:137–149.  https://doi.org/10.1007/s00344-013-9356-2CrossRefGoogle Scholar
  54. Kirkby E (2012) Introduction, definition and classification of nutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier, Amsterdam, pp 3–5CrossRefGoogle Scholar
  55. Kleiber T, Markiewicz B (2013) Application of “Tytanit” in greenhouse tomato growing. Acta Sci Pol 12:117–126Google Scholar
  56. Kováčik J, Klejdus B, Hedbavny J (2010) Effect of aluminium uptake on physiology, phenols and amino acids in Matricaria chamomilla plants. J Hazard Mater 178:949–955.  https://doi.org/10.1016/j.jhazmat.2010.02.029CrossRefPubMedGoogle Scholar
  57. Kronzucker HJ, Coskun D, Schulze LM et al (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23.  https://doi.org/10.1007/s11104-013-1801-2CrossRefGoogle Scholar
  58. Kuzel S, Hruby M, Cígler P et al (2003) Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biol Trace Elem Res 91:179–190CrossRefGoogle Scholar
  59. Landini M, Gonzali S, Kiferle C (2012) Metabolic engineering of the iodine content in Arabidopsis. Sci Rep 2:338.  https://doi.org/10.1038/srep00338CrossRefPubMedPubMedCentralGoogle Scholar
  60. Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32.  https://doi.org/10.1007/978-1-4020-5578-2_1CrossRefGoogle Scholar
  61. Lee MK, van Iersel MW (2008) Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum x morifolium). Horticult Sci 43:1888–1891Google Scholar
  62. Li-Jen L, Yu-Han L, Kuang-Liang H et al (2001) Vase life of Eustoma grandiflorum as affected by aluminumsulfate. Bot Bull Acad Sin 42:35–38Google Scholar
  63. Liu D, Wang X, Lin Y et al (2011) Analysis of the effects of cerium on calcium ion in the protoplasts of Arabidopsis thaliana with confocal microscopy. Afr J Biotechnol 10:10781–10785.  https://doi.org/10.5897/AJB11.946CrossRefGoogle Scholar
  64. Liu D, Lin Y, Wang X (2012a) Effects of lanthanum on growth, element uptake, and oxidative stress in rice seedlings. J Plant Nutr Soil Sci 175:907–911.  https://doi.org/10.1002/jpln.201200016CrossRefGoogle Scholar
  65. Liu D, Wang X, Chen X et al (2012b) Effects of lanthanum on the change of calcium level in the root cells of rice. Commun Soil Sci Plant Anal 43:1994–2003.  https://doi.org/10.1080/00103624.2012.693231CrossRefGoogle Scholar
  66. Liu D, Wang X, Zhang X et al (2013) Effect of lanthanum on growth and accumulation of rice seedlings. Plant Soil Environ 59:19–200CrossRefGoogle Scholar
  67. Liu R, Shan C, Gao Y et al (2016) Cerium improves the copper tolerance of turf grass Poa pratensis by affecting the regeneration and biosynthesis of ascorbate. Braz J Bot 39:779–785.  https://doi.org/10.1007/s40415-015-0246-7CrossRefGoogle Scholar
  68. Lyu S, Wei X, Chen J et al (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597.  https://doi.org/10.3389/fpls.2017.00597CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397.  https://doi.org/10.1016/j.tplants.2006.06.007CrossRefPubMedGoogle Scholar
  70. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Orn Hort Plants 3:25–32Google Scholar
  71. Mandujano-Piña M, Colinas-León MT, Castillo-González AM et al (2012) Cobalt as senescence retardant in postharvest of oriental hybrid Lilium. Rev Chapingo Ser Hortic 18:239–252.  https://doi.org/10.5154/r.rchsh.2010.09.034CrossRefGoogle Scholar
  72. Marchiol L, Mattiello A, Poscic F et al (2016) Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332.  https://doi.org/10.3390/ijerph13030332CrossRefPubMedCentralGoogle Scholar
  73. Marxen A, Klotzbücher T, Jahn R et al (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398:153–163.  https://doi.org/10.1007/s11104-015-2645-8CrossRefGoogle Scholar
  74. Mechora S, Germ M (2010) Selenium induced lower respiratory potential in Glycine max (L.) Merr. Acta Agric Slov 95:29–34.  https://doi.org/10.2478/v10014-010-0004-2CrossRefGoogle Scholar
  75. Medrano-Macias J, Leija-Martínez P, González-Morales S et al (2016) Use of iodine to biofortify and promote growth and stress tolerance in crops. Front Plant Sci 7:1146.  https://doi.org/10.3389/fpls.2016.01146CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mohammadi M, Hashemabadi D, Kaviani B (2012a) Improvement of vase life of cut tuberose (Polianthes tuberosa cv. ‘Single’) with aluminum sulfate. Ann Biol Res 3:5457–5461Google Scholar
  77. Mohammadi M, Hashemabadi D, Kaviani B (2012b) Effect of cobalt chloride on vase life and postharvest quality of cut tuberose (Polianthes tuberosa L.) Eur J Exp Biol 2:2130–2133Google Scholar
  78. Morales MI, Rico CM, Hernández-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230.  https://doi.org/10.1021/jf401628vCrossRefPubMedGoogle Scholar
  79. Moreno-Alvarado M, García-Morales S, Trejo-Téllez LI et al (2017) Aluminum enhances growth and sugar concentration, alters macronutrient status and regulates the expression of NAC transcription factors in rice. Front Plant Sci 8:73.  https://doi.org/10.3389/fpls.2017.00073CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nazirimoghaddam N, Hashemabadi H, Kaviani B (2014) Improvement of vase life of cut rose, sunflower and lisianthus with sodium nitroprusside. Eur J Exp Biol 4:162–165Google Scholar
  81. Norman DJ, Chen J (2011) Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. Horticult Sci 46:426–428Google Scholar
  82. Owolade OF, Ogunleti DO (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 48:329–335.  https://doi.org/10.2478/v10045-008-0042-5CrossRefGoogle Scholar
  83. Palit S, Sharma A, Talukder G (1994) Effect of cobalt on plants. Bot Rev 60:149–181.  https://doi.org/10.1007/BF02856575CrossRefGoogle Scholar
  84. Pezzarossa B, Remorini D, Gentile ML et al (2012) Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J Sci Food Agric 92:781–786.  https://doi.org/10.1002/jsfa.4644CrossRefPubMedGoogle Scholar
  85. Pilon-Smits EA, Quinn CF, Tapken W et al (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274.  https://doi.org/10.1016/j.pbi.2009.04.009CrossRefPubMedGoogle Scholar
  86. Qian Y, Gallagher FJ, Feng H et al (2014) Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site. Sci Total Environ 476–477:696–704.  https://doi.org/10.1016/j.scitotenv.2014.01.049CrossRefPubMedGoogle Scholar
  87. Radkowski A, Radkowska I, Lemek T (2015) Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.) Ecol Chem Eng S 22:691–701.  https://doi.org/10.1515/eces-2015-0042CrossRefGoogle Scholar
  88. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.) Biotechnol Rep 5:22–26.  https://doi.org/10.1016/j.btre.2014.10.009CrossRefGoogle Scholar
  89. Ramírez-Martínez M, Gómez-Merino FC, Trejo-Téllez LI et al (2009) Effect of lanthane on quality of tulip flower ‘Ile de France’. Acta Hortic 847:295–300.  https://doi.org/10.17660/ActaHortic.2009.847.39CrossRefGoogle Scholar
  90. Ramírez-Martínez M, Trejo-Téllez LI, Gómez-Merino FC et al (2012) Bioaccumulation of potassium, calcium and lanthanum in tulip treated with lanthanum. Terra Latin 30:229–238Google Scholar
  91. Raya PJC, Aguirre MCL (2009) Elemental composition of several wild Mexican plants. Rev Chapingo Ser Cien For Ambient 15:95–99Google Scholar
  92. Ribeiro MD, Mapeli AM, Antunes WC, Barros RS (2011) A dual role of selenium in the growth control of seedlings of Stylosanthes humilis. Agric Sci 2:78–85.  https://doi.org/10.4236/as.2011.22012CrossRefGoogle Scholar
  93. Rico CM, Lee SC, Rubenecia R et al (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.) J Agric Food Chem 62:9669–9675.  https://doi.org/10.1021/jf503526rCrossRefPubMedGoogle Scholar
  94. Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558.  https://doi.org/10.1007/s11356-015-4243-yCrossRefGoogle Scholar
  95. Rodríguez-Mercado JJ, Altamirano-Lozano MA (2006) Vanadio: contaminación, metabolismo y genotoxicidad (Vanadium: pollution, metabolism and genotoxicity). Rev Int Contam Ambient 22:173–189Google Scholar
  96. Saco D, Martín S, San José P (2013) Vanadium distribution in roots and leaves of Phaseolus vulgaris: morphological and ultrastructural effects. Biol Plant 57:128–132.  https://doi.org/10.1007/s10535-012-0133-zCrossRefGoogle Scholar
  97. Salachna P, Piechocki R (2016) Effects of sodium chloride on growth and mineral nutrition of purpletop vervain. J. Ecol Eng 17:148–152.  https://doi.org/10.12911/22998993/62311CrossRefGoogle Scholar
  98. Salachna P, Zawadzinska A, Podsiadlo C (2016) Response of Ornithogalum saundersiae Bak. to salinity stress. Acta Sci Pol-Hortoru 15:123–134Google Scholar
  99. Schulze LM, Britto DT, Li M et al (2012) A pharmacological analysis of high-affinity sodium transport in barley (Hordeum vulgare L.): a 24Na+/42K+ study. J Exp Bot 63:2479–2489.  https://doi.org/10.1093/jxb/err419CrossRefPubMedPubMedCentralGoogle Scholar
  100. Seyf M, Khalighi A, Mostofi Y et al (2012a) Study on the effect of aluminum sulfate treatment on postharvest life of the cut rose ‘Boeing’ (Rosa hybrida cv. Boeing). J Hortic Biotech 16:128–132Google Scholar
  101. Seyf M, Khalighi A, Mostofi Y et al (2012b) Effect of sodium nitroprusside on vase life and postharvest quality of a cut rose cultivar (Rosa hybrida ‘Utopia’). J Agric Sci 4:174–181.  https://doi.org/10.5539/jas.v4n12p174CrossRefGoogle Scholar
  102. Shahnaz G, Shekoofeh E, Kourosh D et al (2011) Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J Med Plant Res 5:5818–5827Google Scholar
  103. Shamsi IH, Wei K, Zhang GP et al (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant 52:165–169.  https://doi.org/10.1007/s10535-008-0036-1CrossRefGoogle Scholar
  104. Shi P, Chen GC, Huang ZW (2005) Effects of La3+ on the active oxygen-scavenging enzyme activities in cucumber seedling leaves. Russ J Plant Physiol 52:294–297CrossRefGoogle Scholar
  105. Shyam R, Aery NC (2012) Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.] J Soil Sci Plant Nutr 12:1–14.  https://doi.org/10.4067/S0718-95162012000100001CrossRefGoogle Scholar
  106. Silva RM, Yasuor H, Ben-Gal A et al (2015) Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill.) fruits. Sci Hortic 192:244–249.  https://doi.org/10.1016/j.scienta.2015.06.002CrossRefGoogle Scholar
  107. Smolen S, Sady W (2011a) Influence of iodine fertilization and soil application of sucrose on the effectiveness of iodine biofortification, yield, nitrogen metabolism and biological quality of spinach. Acta Sci Pol Hortoru 10:51–63Google Scholar
  108. Smolen S, Sady W (2011b) Influence of soil application of iodine and sucrose on mineral composition of spinach plants. Acta Sci Pol Hortoru 10:3–13Google Scholar
  109. Smolen S, Skoczylas Ł, Ledwozyw-Smolen I et al (2016) Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant Sci 7:730.  https://doi.org/10.3389/fpls.2016.00730CrossRefGoogle Scholar
  110. Sozudogru S, Kutuk AC, Halilova H (2001) Effects of vanadium on the growth, chlorophyll, and mineral content of soybean (Glycine max (L.) Merr). Ciencia 9:88–95Google Scholar
  111. Szwonek E (2009) Impact of foliar fertilizer containing iodine on “Golden Delicious” apple trees. Proceedings of the International Plant Nutrition Colloquium XVI. University of California at Davis. pp 1–5. Available online at: https://escholarship.org/uc/item/8bp5w7z7
  112. Tlustos P, Cígler P, Hruby M, Kuzel S, Száková J, Balík JS (2005) The role of titanium in biomass production and its influence on essential elements’ contents in field growing crops. Plant Soil Environ 51:19–25CrossRefGoogle Scholar
  113. Trejo-Téllez LI, Gómez-Merino FC (2012) Nutrient solutions for hydroponic systems. In: Asao T (ed) Hydroponics – a standard methodology for plant biological researches. InTech, Rijeka, pp 1–22Google Scholar
  114. Trejo-Téllez LI, Gómez-Merino FC, Gómez-Pérez V, Castro-García FA (2014) Cobalt in postharvest of gladiolus (Gladiolus grandiflorus Hort.) Rev Mex Cienc Agríc 9:1575–1587Google Scholar
  115. Trejo-Téllez LI, Gómez-Merino FC, Alcántar-González G (2016) Elementos benéficos: potencialidades y limitantes. In: Alcántar-González G, Trejo-Téllez LI, Gómez-Merino FC (eds) Nutrición de cultivos. Colegio de Postgraduados, Mexico City, pp 59–101Google Scholar
  116. Turra C, Fernandes EAN, Bacchi MA et al (2015) Effects of lanthanum on citrus plant. Int J New Tech Res 1:48–50Google Scholar
  117. Vachirapatama N, Jirakiattikul Y, Dicinoski G et al (2011) Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J Sci Technol 33:255–261Google Scholar
  118. Wahid PA, Valiathan MS, Kamalam NV et al (2000) Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantean. J Plant Nutr 23:329–338.  https://doi.org/10.1080/01904160009382019CrossRefGoogle Scholar
  119. Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 216:47–51.  https://doi.org/10.1023/A:1004723509113CrossRefGoogle Scholar
  120. Wang XD, Ou-yang C, Fan ZR et al (2010) Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. J Anim Plant Sci 6:700–708Google Scholar
  121. Wang Q, Ma X, Zhang W et al (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112.  https://doi.org/10.1039/C2MT20149FCrossRefPubMedGoogle Scholar
  122. Wang Q, Ebbs SD, Chen Y et al (2013a) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759.  https://doi.org/10.1039/c3mt00033hCrossRefPubMedGoogle Scholar
  123. Wang H, Wang T, You L et al (2013b) Effects of vanadate supply on plant growth, Cu accumulation, and antioxidant capacities in Triticum aestivum L. Environ Geochem Health 35:585–592.  https://doi.org/10.1007/s10653-013-9541-zCrossRefPubMedGoogle Scholar
  124. Wang L, Fan XW, Pan JL et al (2015) Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta 242:1391–1403.  https://doi.org/10.1007/s00425-015-2376-3CrossRefPubMedPubMedCentralGoogle Scholar
  125. Watanabe T, Jansen S, Osaki M (2005) The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum. New Phytol 165:773–780.  https://doi.org/10.1111/j.1469-8137.2004.01261.xCrossRefPubMedGoogle Scholar
  126. Whitted-Haag B, Kopsell DE, Kopsell DA et al (2014) Foliar silicon and titanium applications influence growth and quality characteristics of annual bedding plants. Open Hortic J 7:6–15.  https://doi.org/10.2174/1874840601407010006CrossRefGoogle Scholar
  127. Wu M, Wang PY, Sun LG et al (2014) Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant Growth Regul 74:251–260.  https://doi.org/10.1007/s10725-014-9916-xCrossRefGoogle Scholar
  128. Yan S, Huang X, Zhou Q (2007) Effect of lanthanum (III) on reactive oxygen metabolism of soybean seedlings under supplemental UV-B irradiation. J Rare Earths 25:352–358.  https://doi.org/10.1016/S1002-0721(07)60435-9CrossRefGoogle Scholar
  129. Yin S, Ze Y, Liu C et al (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132:247–258.  https://doi.org/10.1007/s12011-009-8392-zCrossRefPubMedGoogle Scholar
  130. Yousuf PY, Ahmad A, Ganie AH et al (2016) Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes. Environ Sci Pollut Res 23:2391.  https://doi.org/10.1007/s11356-015-5441-3CrossRefGoogle Scholar
  131. Yuan J, Hu M, Zhou Z (2013) Selenium treatment mitigates the effect of lead exposure in Coleus blumei Benth. J Environ Anal Toxicol 3:191.  https://doi.org/10.4172/2161-0525.1000191CrossRefGoogle Scholar
  132. Zeng FL, Shi P, Zhang MF et al (2000) Effect of lanthanum on ion absorption in cucumber seedling leaves. Biol Trace Elem Res 78:265–270.  https://doi.org/10.1385/BTER:78:1-3:265CrossRefPubMedGoogle Scholar
  133. Zhang X, Wang L, Zhou A et al (2016) Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum (III) and acid rain. Ecotoxicol Environ Saf 126:62–70.  https://doi.org/10.1016/j.ecoenv.2015.12.014CrossRefPubMedGoogle Scholar
  134. Zhu Z, Chen Y, Zhang X et al (2016) Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci Hortic 198:304–310.  https://doi.org/10.1016/j.scienta.2015.12.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fernando Carlos Gómez-Merino
    • 1
  • Libia Iris Trejo-Téllez
    • 2
  1. 1.Colegio de Postgraduados Campus Córdoba, Amatlán de los ReyesVeracruzMexico
  2. 2.Colegio de Postgraduados Campus MontecilloTexcocoMexico

Personalised recommendations