Progress and Prospects in Capsicum Breeding for Biotic and Abiotic Stresses

  • Sushil Satish Chhapekar
  • Vandana Jaiswal
  • Ilyas Ahmad
  • Rashmi Gaur
  • Nirala Ramchiary
Chapter

Abstract

The genus Capsicum (chili), one of the important Solanaceae crop plants, is grown widely for producing vegetables and spices and for extraction of the coloring agent. Chili fruits contain a vast number of metabolites that are crucial for human health, viz., carotenoids (provitamin A), vitamin E, vitamins C, flavonoids, and capsaicinoids (destroy free radicals). However, Capsicum production is highly affected by biotic and abiotic stresses and, thus, needs urgent attention of Capsicum researchers/breeders. Abiotic stresses mainly include drought, heat, cold, and salinity, while major biotic stresses comprise of root, stem, leaf, and fruit rots; leaf spot, viral, and powdery mildew diseases; and diseases caused by nematodes. Several studies identifying/mapping QTLs/genes conferring resistance/tolerance to major biotic and abiotic stresses have been reported. The global initiative to collect and share and systematic evaluation of phenotypes of Capsicum genetic materials for abiotic and biotic stress resistances/tolerances would greatly enhance the understanding of genetic mechanism regulating those traits, thereby helping in sustainable production to meet the worldwide demand and increase the income of the farmers. Furthermore, the introduction of high-throughput next-generation sequencing (NGS) technologies to sequence genomes and transcriptomes within a short period of time with comparatively cheaper cost would be helpful to decipher the genome structure and function of genes.

Keywords

Capsicum Plant stress Gene mapping Breeding 

Notes

Acknowledgment

This work was supported by the research grant from the University Grants Commission, India, to Dr. Nirala Ramchiary, from the UGC Resource Networking Project of the School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

References

  1. Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360PubMedCrossRefGoogle Scholar
  2. Ahn YK, Tripathi S, Kim JH, Cho YI, Lee HE, Kim DS, Woo JG, Cho MC (2013) Transcriptome analysis of Capsicum annuum varieties Mandarin and Blackcluster: assembly, annotation and molecular marker discovery. Gene 533:494–499PubMedCrossRefGoogle Scholar
  3. Ahn YK, Tripathi S, Kim JH, Cho YI, Lee HE, Kim DS, Woo JG, Yoon MK (2014) Microsatellite marker information from high-throughput next-generation sequence data of Capsicum annuum varieties Mandarin and Blackcluster. Sci Hortic 170:23–130CrossRefGoogle Scholar
  4. Al-Harbi AR, Saleh AM, Al-Omran AM, Wahb-Allah MA (2014) Response of bell-pepper (Capsicum annuum L.) to salt stress and deficit irrigation strategy under greenhouse conditions. Acta Hortic 1034:443–445CrossRefGoogle Scholar
  5. Al-Hattab ZN, Al-Ajeel SA, El-Kaaby EA (2015) Effect of salinity stress on Capsicum annuum callus growth, regeneration and callus content of capsaicin, phenylalanine, proline and ascorbic acid. Life Sci 9:304–310Google Scholar
  6. Alimi NA, Bink MCAM, Dieleman JA et al (2013) Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190:181–201CrossRefGoogle Scholar
  7. Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O’Connell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J Exp Bot 54:1655–1664PubMedCrossRefGoogle Scholar
  8. An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78PubMedPubMedCentralCrossRefGoogle Scholar
  9. Armita D, Arumyngtyas EL, Mastuti R (2017) Tolerance level of three genotypes of cayenne pepper (Capsicum frutescens L.) toward drought stress of vegetative phase based on morphological and physiological responses. Int J Chem Tech Res 10:183–192Google Scholar
  10. Arnedo-Andres MS, Gil-Ortega R, Luis-Arteaga M, Hormaza JI (2002) Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.) Theor Appl Genet 105:1067–1074PubMedCrossRefGoogle Scholar
  11. Babu BS, Pandravada SR, Prasad Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Global source of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot 30:389–400CrossRefGoogle Scholar
  12. Banerjee A, Dutta R, Roy S, Ngachan SV (2014) First report of Chilliveinal mottle virus in Naga chilli (Capsicum chinense) in Meghalaya, India. Virus Dis 25:142–143CrossRefGoogle Scholar
  13. Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50:51–60PubMedCrossRefGoogle Scholar
  14. Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171PubMedCrossRefGoogle Scholar
  15. Bartoszewski G, Waszczak C, Gawronski P et al (2012) Mapping of the ms8 male sterility gene in sweet pepper (Capsicum annuum L.) on the chromosome P4 using PCR-based markers useful for breeding programmes. Euphytica 186:453–461CrossRefGoogle Scholar
  16. Ben-Chaim A, Grube RC, Lapidot M, Jahn M, Paran I (2001) Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theorn Appl Genet 102:1213–1220CrossRefGoogle Scholar
  17. Ben-Chaim A, Borovsky Y, Rao GU, Tanyolac B, Paran I (2003) fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46:1–9PubMedCrossRefGoogle Scholar
  18. Ben-Chaim A, Brodsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490PubMedCrossRefGoogle Scholar
  19. Berger A, Henderson M, Nadoolman W, Duffy V, Cooper D, Saberski L, Bartoshuk L (1996) Oral capsaicin provides temporary relief for oral mucositis pain secondary to chemotherapy/radiation therapy. J Pain Symptom Manag 10:243–248. Erratum in: J Pain Symptom Manage. 11:331CrossRefGoogle Scholar
  20. Blum E, Liu K, Mazourek M, Yoo EY, Jahn M, Paran I (2002) Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45:702–705PubMedCrossRefGoogle Scholar
  21. Boiteux LS, Nagata T, Dutra WP, Fonseca MEN (1993) Sources of resistance to tomato spotted wilt virus (TSWV) in cultivated and wild species of Capsicum. Euphytica 67:89–94CrossRefGoogle Scholar
  22. Borovsky Y, Paran I (2011) Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. Theor Appl Genet 123:657–665PubMedCrossRefGoogle Scholar
  23. Bosland PW (1996) Capsicums: innovative uses of an ancient crop. In: Janick J (ed) Progress in new crops. Ashs Press, Arlington, pp 479–487Google Scholar
  24. Bosland PW (2008) Think global, breed local: specificity and complexity of Phytophthoracapsici. In: 19th Int. Pepper Conf. Atlantic City, NJGoogle Scholar
  25. Brand A, Borovsky Y, Hill T, Rahman KAA, Bellalou A, Deynze AV (2014) CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet 127:2139–2148PubMedCrossRefGoogle Scholar
  26. Caranta C, Palloix A, Lefebvre V, Daube ze AM (1997) QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host cells. Theor Appl Genet 94:431–438CrossRefGoogle Scholar
  27. Caranta C, Thabuis A, Palloix A (1999) Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42:1111–1116PubMedCrossRefGoogle Scholar
  28. Caranta C, Pflieger S, Lefebvre V, Daubeze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591PubMedCrossRefGoogle Scholar
  29. Chatzidimitriadou K, Nianiou-Obeidat I, Madesis P, Perl-Treves R, Tsaftaris A (2009) Expression of SOD transgene in pepper confer stress tolerance and improve shoot regeneration. Electron J Biotechnol 12.  https://doi.org/10.2225/vol12-issue4-fulltext-10
  30. Chen RG, Li HX, Zhang LY, Zhang JH, Xiao JH, Ye ZB (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905PubMedCrossRefGoogle Scholar
  31. Chen C, Chen G, Hao Z, Cao B, Chen Q, Liu S, Lei J (2011) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci 181:439–448PubMedCrossRefGoogle Scholar
  32. Chen CM, Hao XF, Chen GJ, Cao BH, Chen QH, Liu SQ, Lei JJ (2012) Characterization of a new male sterility-related gene Camf1 in Capsicum annum L. Mol Biol Rep 39:737–744PubMedCrossRefGoogle Scholar
  33. Chen C, Chen G, Cao B, Lei J (2015) Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-Seq technology. Plant Cell Tissue Organ Cult 122:465–476CrossRefGoogle Scholar
  34. Cheng J, Qin C, Tang X, Zhou H, Hu Y, Zhao Z, Cui J, Li B, Wu Z, Yu, Hu K (2016) Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.) Sci Rep 6.  https://doi.org/10.1038/srep33293
  35. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucanendotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144PubMedCrossRefGoogle Scholar
  37. Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235:1369–1382PubMedCrossRefGoogle Scholar
  38. Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904PubMedPubMedCentralCrossRefGoogle Scholar
  39. Csillery G, Szarka E, Sardi E, Mityko J, Kapitany J, Nagy B, Szarka J (2004) The unity of plant defense: genetics, breeding and physiology. In Proceedings 12th Eucarpia meeting on genetics and breeding of Capsicum and Egg-plant, Noordwijkerhout, the Netherlands, pp 147–153Google Scholar
  40. Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57CrossRefGoogle Scholar
  41. Devran Z, Kahveci E, Ozkaynak E, Studholome DJ, Tor M (2015) Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing. Mol Breed 35:101PubMedPubMedCentralCrossRefGoogle Scholar
  42. Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze A, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat stable resistance in pepper (Capsicum annuum L.) Theor Appl Genet 99:496–502PubMedCrossRefGoogle Scholar
  43. Djian-Caporalino C, Pijarowski L, Fazari A et al (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogynespp.) Theor Appl Genet 103:592–600CrossRefGoogle Scholar
  44. Djian-Caporalino C, Fazari A, Arguel MJ et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486PubMedCrossRefGoogle Scholar
  45. Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod 29:67–79PubMedPubMedCentralCrossRefGoogle Scholar
  46. Duan MM (2014) Construction of intraspecific genetic linkage map and qtl analysis of phytological traits and phytophthoracapsici resistance in pepper (Capsicum L.): Chinese Academy of Agricultural Sciences (in Chinese with English Abstract). 46Google Scholar
  47. Dwivedi N, Kumar R, Paliwal R, Kumar U, Kumar S, Singh M, Singh RK (2013) QTL mapping for important horticultural traits in pepper (Capsicum annuum L.) J Plant Biochem Biotechnol.  https://doi.org/10.1007/s13562-013-0247-1CrossRefGoogle Scholar
  48. Fazari A, PalloixA WL, Hua YM, Sage-Palloix AM, Zhang BX, Djian-Caporalino C (2012) The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131:665–673CrossRefGoogle Scholar
  49. Fraire-Velzquez S, Rodriguez-Guerra R, Sanchez-Calderon L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants – physiological, biochemical and genetic perspectives. Intech, New York, pp 1–24Google Scholar
  50. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gao F, Chang F, Shen J, Shi F, Xie L, Zhan J (2014) Complete genome analysis of a novel recombinant isolate of potato virus Y from China. Arch Virol 159:3439–3442PubMedCrossRefGoogle Scholar
  52. Garcia SNJ, Vazquez Cruz MA, Gonzalez RGG, Pacheco IT, Angelica AA, Perez F (2016) Influence of salicylic acid application on oxidative and molecular responses and functional properties of Capsicum annuum L. cultvated in greenhouse conditions 1st electronic conference on metabolite chaired by Dr. Peter MeikleGoogle Scholar
  53. Garruna-Hernandez R, Orellana R, Larque-Saavedra A, Canto A (2014) Understanding the physiological responses of a tropical crop (Capsicumchinense Jacq.) at high temperature. PLoS One 9:e111402PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gongora-Castillo E, Fajardo-Jaime R, Fernández-Cortes A et al (2012) The Capsicum transcriptome DB: a “hot” tool for genomic research. Bioinformation 8:043–047PubMedPubMedCentralCrossRefGoogle Scholar
  55. Green SK, Kim JS (1991) Characteristics and control of viruses infecting peppers, Technical Bulletin No. 18. Asian Vegetable Research and Development Centre, TaipeiGoogle Scholar
  56. Guo W, Chen R, Du XZ, Yin Y, Gong Z, Wang G (2014) Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor. BMC Plant Biol 14:138PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Geno.  https://doi.org/10.1155/2014/701596
  58. Ha SH, Kim JB, Jong-Sug Park JS, Lee SW, Cho KJ (2007) A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144PubMedCrossRefGoogle Scholar
  59. Hayat Q, Hayat S, Alyemeni MN, Ahmad A (2012) Salicylic acid mediated change in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer orietinum L. Plant Soil Environ 58:417–423CrossRefGoogle Scholar
  60. Hernan VA, Rosa U, Luisa OL, Dominique R, Orlene G, Yereni M, Oscar M (2013) A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim Biotechnol Lett 35:811CrossRefGoogle Scholar
  61. Herting SH, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot 89:851–859CrossRefGoogle Scholar
  62. Hill TA, Ashrafi H, Reyes-Chin-Wo S et al (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip. PLoS One 8:e56200PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hong JP, Kim WT (2005) Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta 220:875–888PubMedCrossRefGoogle Scholar
  64. Hong Truong HT, Kim JH, Cho MC, Chae SY, Lee HE (2013) Identification and development of molecular markers linked to Phytophthora root rot resistance in pepper (Capsicum annuum L.) Eur J Plant Pathol 135:289–297CrossRefGoogle Scholar
  65. Hu WH, Xiao YA, Zeng JJ, Hu XH (2010) Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol Plant 54:761–765CrossRefGoogle Scholar
  66. Huez-Lopez MA, Ulery AL, Samani Z, Picchioni G, Flynn RP (2011) Response of chille pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I. growth and yield. Trop Subtrop Agroecosyst 14:757–763Google Scholar
  67. Huh J, Kang B, Nahm S, Kim S, Ha K, Lee M, Kim B (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit colour in red pepper (Capsicum spp.) Theor Appl Genet 102:524–530CrossRefGoogle Scholar
  68. Huh SU, Kim KJ, Paek KH (2012a) Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem Biophys Res Commun 417:910–917PubMedCrossRefGoogle Scholar
  69. Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH (2012b) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci 197:50–58PubMedCrossRefGoogle Scholar
  70. Hurtado-Hernandez H, Smith P (1985) Inheritance of mature fruit colour in Capsicum annuum L. J Hered 76:211–213CrossRefGoogle Scholar
  71. Hwang IS, Hwang BK (2010) The pepper 9-Lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicumannuum) genes under cold stress conditions. J Biosci 30:657–667PubMedCrossRefGoogle Scholar
  73. Hwang JN, Li J, Liu WY, An SJ, Cho H, Her NH, Yeam I, Kim D, Kang B (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilliveinal mottle virus in pepper. Mol Cells 27:329–336PubMedCrossRefGoogle Scholar
  74. Isbat M, Zeba N, Kim SR, Hong CB (2009) A BAX inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J Plant Physiol 166(2009):1685–1693PubMedCrossRefGoogle Scholar
  75. Jeong K, Choi D, Lee J (2017) Fine mapping of the genic male-sterile ms1 gene in Capsicum annuum L. Theor Appl Genet.  https://doi.org/10.1007/s00122-017-2995-0
  76. Jing H, Li C, Ma F et al (2016) Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annum L.) PLoS One 11(8):e0161073PubMedPubMedCentralCrossRefGoogle Scholar
  77. Jones JB, Stall RE (1998) Diversity among xanthomonads pathogenic on pepper and tomato. Annu Rev Phytopathol 36:41–58PubMedCrossRefGoogle Scholar
  78. Jones JB, Minsavage GV, Roberts PD, Johnson RR, Kousik CS, Subramanian S, Stall RE (2002) A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92:273–277PubMedCrossRefGoogle Scholar
  79. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755–762PubMedCrossRefGoogle Scholar
  80. Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum x C. Chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539CrossRefGoogle Scholar
  81. Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) Thepvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with tobacco etch virus VPg. Plant J42:392–405Google Scholar
  82. Kang WH, Hoang NH, Yang HB et al (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.) Theor Appl Genet 120:1587–1596PubMedCrossRefGoogle Scholar
  83. Kaur N, Singh DJ, Singh KD (2011) Physiological and biochemical traits analysis of Capsicum annuum L. germplasm for resistance to Colletotrichum capsici. J Cell Plant Sci 2:12–21Google Scholar
  84. Khan AL, Kang S, Dhakal KH, Hussain J, Adnan M, Kim J, Lee I (2013) Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Sci Hortic 155:1–7CrossRefGoogle Scholar
  85. Kim DS, Hwang BK (2012) The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:843–855PubMedCrossRefGoogle Scholar
  86. Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219PubMedGoogle Scholar
  87. Kim SH, Hong JK, Lee SC, Sohn KH, Jung HW, Hwang BK (2004) CAZFP1, Cys2/His-type zinc-finger transcription factor gene functions as a pathogen-induced early-sene in Capsicum annuum. Plant Mol Biol 55:883–904PubMedCrossRefGoogle Scholar
  88. Kim HJ, Nahm SH, Lee HR et al (2008) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.) Theor Appl Genet 118:15–27PubMedCrossRefGoogle Scholar
  89. Kim OR, Cho MC, Kim BD, Huh JH (2010a) A splicing mutation in the gene encoding phytoene synthase causes orange coloration in Habanero pepper fruits. Mol Cells 30:569–574PubMedCrossRefGoogle Scholar
  90. Kim S, Kim KT, Kim DH et al (2010b) Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.) Korean J Hortic Sci Technol 28:1014–1024Google Scholar
  91. Kim MK, Seo JK, Kwak HR, Kim JS, Kim KH, Cha BJ, Choi HS (2014a) Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea. Phytopathology 104:993–1000PubMedCrossRefGoogle Scholar
  92. Kim S, Park M, Yeom SI et al (2014b) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278.  https://doi.org/10.1038/ng.2877CrossRefPubMedGoogle Scholar
  93. Kim DS, Choi HW, Hwang BK (2014c) Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses. Planta 240:827–839PubMedCrossRefGoogle Scholar
  94. Kumar S, Kumar R, Kumar S, Singh M, Rai AB, Rai M (2011) Incidences of leaf curl disease on Capsicum germplasm under field conditions. Ind J Agric Sci 81:187–189Google Scholar
  95. Lee S, Choi D (2013) Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments. Plant Cell Rep 32:1351–1359PubMedCrossRefGoogle Scholar
  96. Lee SC, Kim SH, An SH, Yi SY, Hwang BK (2006) Identification and functional expression of the pepper pathogen induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance. Plant Mol Biol 62:151–164PubMedCrossRefGoogle Scholar
  97. Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD (2008a) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27:21–37PubMedCrossRefGoogle Scholar
  98. Lee J, Yoon JB, Park HG (2008b) Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility. Theor Appl Genet 117:383–389PubMedCrossRefGoogle Scholar
  99. Lee J, Han JH, An CG, Lee WP, Yoon JB (2010a) A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, ‘Paprika’ (Capsicum annuum L.) Breed Sci 60:93–98CrossRefGoogle Scholar
  100. Lee J, Yoon JB, Han JH, Lee WP, Do JW, Ryu H, Kim SH, Park HG (2010b) A codominant SCAR marker linked to the genic male sterility gene (ms1) in chili pepper (Capsicum annuum). Plant Breed 129:35–38CrossRefGoogle Scholar
  101. Lee J, Yoon JB, Han JH, Lee WP, Kim SH, Park HG (2010c) Three AFLP markers tightly linked to the genic male sterility ms3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55–61CrossRefGoogle Scholar
  102. Lee SC, Hwang BK, Choi DS, Hwang IS (2010d) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409–424PubMedCrossRefGoogle Scholar
  103. Lee HR, An HJ, You YJ, Lee J, Kim HJ, Kang BC, Harn CH (2013) Development of a novel codominant molecular marker for chiliveinal mottle virus resistance in Capsicum annuum L. Euphytica 193:197–205CrossRefGoogle Scholar
  104. Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intra-specific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121PubMedCrossRefGoogle Scholar
  105. Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854PubMedCrossRefGoogle Scholar
  106. Lefebvre V, Daubeze AM, Voort RJ, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666PubMedCrossRefGoogle Scholar
  107. Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127(2):182–191CrossRefGoogle Scholar
  108. Li T, Xu X, Li Y, Wang H, Li Z, Li Z (2015a) Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper (Capsicumannum L.) cultivars under heat stress. J Plant Biol 58:411–424CrossRefGoogle Scholar
  109. Li W, Cheng J, Wu Z, Qin C, Tan S, Tang X, Cui J, Zhang L, Hu K (2015b) An InDel-based linkage map of hot pepper (Capsicum annuum). Mol Breed 35:32PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li J, Yang P, Kang J et al (2016) Transcriptome analysis of pepper (Capsicumannuum) revealed a role of 24-epibrassinolide in response to chilling. Front Plant Sci 7:1281PubMedPubMedCentralGoogle Scholar
  111. Lim JH, Park CJ, Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH (2011) Capsicum annuum WRKYb transcription factor that binds to the CaPR-10 promoter functions as a positive regulator in innate immunity upon TMV infection. Biochem Biophys Res Commun 411:613–619PubMedCrossRefGoogle Scholar
  112. Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942PubMedCrossRefGoogle Scholar
  113. Liu WY, Kang JH, Jeong HS, Choi HJ, Yang HB, Kim KT, Choi D, Choi GJ, Jahn M, Kang BC (2014) Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor Appl Genet 127:2503–2513PubMedCrossRefGoogle Scholar
  114. Liu Z, Zhang Y, Ou L, Kang L, Liu Y, Lv J, Wei G, Yang B, Yang S, Chen W, Dai X, Li X, Zhou S, Zhang Z, Ma Y, Zou X (2017) Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsicum annuum L.) Gene 15:66–72CrossRefGoogle Scholar
  115. Livingstone KD, Lackney VK, Blauth J, Wijk VR, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedPubMedCentralGoogle Scholar
  116. Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LA, Resende RO (2008) The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 137:245–252PubMedCrossRefGoogle Scholar
  117. Lu FH, Cho MC, Park YJ (2012) Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 39:3327–3335PubMedCrossRefGoogle Scholar
  118. Ma Y, Huang W, Ji JJ, Gong ZH, Yin CC, Ahmed SS, Zhao ZL (2013) Maintaining and restoration cytoplasmic male sterility systems in pepper (Capsicum annuum L.). Genet Mol Res 4:12Google Scholar
  119. Maga JA (1975) Capsicum. Crit Rev Food Sci Nutr 6:177–199CrossRefGoogle Scholar
  120. Mahasuk P, Struss D, Mongkolporn O (2016) QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed 36:1–10CrossRefGoogle Scholar
  121. Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant-Microbe Interact 20:547–558PubMedCrossRefGoogle Scholar
  122. Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugarcane Technol 22:21–30Google Scholar
  123. Matsunaga H, Saito T, Hirai M, Nunome T, Yoshida T (2003) DNA markers linked to Pepper mild mottle virus (PMMoV) resistant locus (L4) in Capsicum. J Jpn Soc Hort Sci 72:218–220CrossRefGoogle Scholar
  124. Maurya VK, Srinivasan R, Nalini E, Ramesh N, Gothandam KM (2014) Analysis of stress responsive genes in Capsicum for salinity responses. ARRB.  https://doi.org/10.9734/ARRB/2015/14107
  125. Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L (2010) Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J Ethnopharmacol 132:1–14PubMedCrossRefGoogle Scholar
  126. Mimura Y, Minamiyama Y, Sano H (2010) Mapping for axillary shooting, flowering date, primary axis length, and number of leaves in pepper (Capsicum annuum). J Jap Soc Hort Sci 79:56–63CrossRefGoogle Scholar
  127. Mimura Y, Inoue T, Minamiyama Y, Kubo N (2012) An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed Sci 62:93–98PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mondal CK, Acharyya O, Hazra P (2013) Biochemical basis of plant defense for leaf curl virus of chilli (Capsicum annuum). In Proceeding XV EUCARPIA meeting on genetics and breeding of Capsicum and Eggplant, 2–4 Sept, Turin, Italy, pp 315–322Google Scholar
  129. Moodley V, Ibaba JD, Naidoo R, Gubba A (2014) Full-genome analyses of a Potato virus Y (PVY) isolate infecting pepper (Capsicum annuum L.) in the Republic of South Africa. Virus Genes 49:466–476PubMedCrossRefGoogle Scholar
  130. Moon SJ, Han SY, Kim DY, Yoon IS, Shin D, Byun MO, Kwon HB, Kim BG (2015) Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. Plant Mol Biol 89:421PubMedCrossRefGoogle Scholar
  131. Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S (2017) CaHDZ27, a homeodomain-leucine zipper i protein, positively regulates the resistance to Ralstonia solanacearum infection in pepper. Mol Plant-Microbe Interact.  https://doi.org/10.1094/MPMI-06-17-0130-R
  132. Moulin MM, Rodrigues R, Bento CS, Gonçalves LSA, Santos JO, Sudre CP, Viana AP (2015) Genetic dissection of agronomic traits in Capsicum baccatum var. pendulum. Genet Mol Res 14:2122–2132PubMedCrossRefGoogle Scholar
  133. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) in pepper. Genome 43:943–951CrossRefGoogle Scholar
  134. Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Niol 59:651–681CrossRefGoogle Scholar
  135. Murphy JF, Blauth JR, Livingstone KD, Lackney VK, Jahn MK (1998) Genetic mapping of the pvr1 locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol Plant-Microbe Interact 11:943–951CrossRefGoogle Scholar
  136. Naegele RP, Ashrafi H, Hill TA, Reyes Chin-Wo S, Van Deynze AE, Hausbeck MK (2014) QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population. Phytopathology 104:479–483PubMedCrossRefGoogle Scholar
  137. Neto AD, Prisco JT, Eńeas-Filho J, Lacerda CF, Silva CF, PHA C, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brz J Plant Physiol 16:31–34CrossRefGoogle Scholar
  138. Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11:2295–2300PubMedCrossRefGoogle Scholar
  139. Ogundiwin EA, Berke M, Massoudi TF, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthoracapsiciroot-rot and foliar-blight diseases of pepper (Capsicum annuum L.) Genome 48:698–711PubMedCrossRefGoogle Scholar
  140. Oh SK, Baek KH, Seong ES et al (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261PubMedPubMedCentralCrossRefGoogle Scholar
  141. Okunlola GO, Olatunji OA, Akinwale RO, Tariq A, Adelusi AA (2017) Physiological response of the three most cultivated pepper species (Capsicumspp.) in Africa to drought stress imposed at three stages of growth and development. Sci Hortic 224:198–205CrossRefGoogle Scholar
  142. Pandravada SR, Varaprasad KS, Reddy KJ, Rao ES (2010) Screening and identification of sources of resistance against root-knot nematode (Meloidogyne javanica) in chilli (Capsicum annuum) germplasm. Ind J Agri Sci 80:92–94Google Scholar
  143. Park SW, Jung JK, Choi EA, Kwon JK, Kang JH, Jahn M, Kang BC (2014) An EST-based linkage map reveals chromosomal translocation in Capsicum. Mol Breed.  https://doi.org/10.1007/s11032-014-0089-0
  144. Pernezny K, Roberts PD, Murphy JF, Goldberg NP (2003) Compendium of pepper diseases. The American Phytopathological Society, MinnesotaGoogle Scholar
  145. Perry L, Dickau R, Zarrillo S, Holst I, Pearsal DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS, Sandweiss DH, Scaramelli F, Tarble K, Zeidler JA (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988PubMedCrossRefGoogle Scholar
  146. Phimchan P, Techawongstien S (2012) Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. HortSci 47:1204–1209Google Scholar
  147. Pierre M, Noel L, Lahaye T, Ballvora A, Veuskens J, Ganal M, Bonas U (2000) High-resolution genetic mapping of the pepper resis-tance locus Bs3governing recognition of the Xanthomonas campestris pv vesicatora AvrBs3 protein. Theor Appl Genet 101:255–263CrossRefGoogle Scholar
  148. Pochard E, Dumas de Valuix R, Florent A (1983) Linkage between partial resistance to CMV and susceptibility to TMV in the line Perennial: analysis on androgenetic homozygous lines. Capsicum Eggplant News 2:34–35Google Scholar
  149. Popovsky S, Paran I (2000) Molecular analysis of the Y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit color. Theor Appl Genet 101:86–89CrossRefGoogle Scholar
  150. Portis E, Nagy I, Sasva Z, Stagelri A, Barchi L, Lanteri S (2007) The design of Capsicum spp. SSR assays via analysis of In silico DNA sequence, and their potential utility for genetic mapping. Plant Sci 172:640–648CrossRefGoogle Scholar
  151. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  152. Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36:404–417PubMedCrossRefGoogle Scholar
  153. Qados A, Amira MS (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J Sau Soci Agric Sci 10:7–15Google Scholar
  154. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Aca Sci USA 111:5135–5140CrossRefGoogle Scholar
  155. Quirin EA, Ogundiwin EA, Prince JP et al (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to PhytophthoracapsiciLon. in pepper. Theor Appl Genet 110:605–612PubMedCrossRefGoogle Scholar
  156. Ramchiary N, Mechuselie K, Brahma V, Kumaria S, Tandon P (2013) Application of genetics and genomics towards Capsicum translational research. Plant Biotechnol Rep 8:101–123CrossRefGoogle Scholar
  157. Rao GU, Chaim AB, Borovsky E, Paran I (2003) Mapping of yield related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466PubMedCrossRefGoogle Scholar
  158. Reddy KM, Reddy MK (2010) Breeding for virus resistance. In: Kumar R, Rai AB, Rai M, Singh HP (eds) Advances in chilli research. Studium Press Pvt. Ltd., New Delhi, pp 119–132Google Scholar
  159. Reddy MK, Srivastava A, Kumar S, Kumar R, Chawda N, Ebert AW, Vishwakarma M (2014a) Chilli (Capsicum annuum L.) breeding in India: an overview. J Breed Genet 46:160–173Google Scholar
  160. Reddy UK, Almeida A, Abburi VL et al (2014b) Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS One 9:e86393PubMedPubMedCentralCrossRefGoogle Scholar
  161. Reeves G, Monroy-Barbosa A, Bosland PW (2013) A novel Capsicum gene inhibits host-specific disease resistance to Phytophthoracapsici. Phytopathology 103:472–478PubMedCrossRefGoogle Scholar
  162. Rodriguez-Uribe L, Guzman I, Rajapakse W, Richins RD, O’Connell MA (2012) Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J Exp Bot 63:517–526PubMedCrossRefGoogle Scholar
  163. Romer P, Jordan T, Lahaye T (2010) Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breed 129:737–740CrossRefGoogle Scholar
  164. Rubio M, Caranta C, Palloix A (2008) Functional markers for selection of potyvirusresistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR. Genome 51:767–771PubMedCrossRefGoogle Scholar
  165. Rubio M, Nicolaï M, Caranta C, Palloix A (2009) Allele mining in the pepper gene pool provided new complementation effects between pvr2-eIF4E and pvr6-eIF(iso)4E alleles for resistance to pepperveinal mottle virus. J Gen Virol 90:2808–2814PubMedCrossRefGoogle Scholar
  166. Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075PubMedCrossRefGoogle Scholar
  167. Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepperveinal mottle virus infection of pepper. J Gen Virol 87:2089–2098PubMedCrossRefGoogle Scholar
  168. Sanchita SA (2016) Computational gene expression profiling under salt stress reveals patterns of co-expression. Genom Data.  https://doi.org/10.1016/j.gdata.2016.01.009
  169. Semiz GD, Suarez DL, Unlukara A, Yurtseven E (2014) Interactive effects of salinity and n on pepper (Capsicum annuum l.) yield, water use efficiency and root zone and drainage salinity. J Plant Nutr 37:595–610CrossRefGoogle Scholar
  170. Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, Kumar U (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annum L.) Sci Rep 7:2760PubMedPubMedCentralCrossRefGoogle Scholar
  171. Silvar C, Garcia-Gonzalez (2017) Screening old peppers (Capsicum spp.) for disease resistance and pungency-related traits. Scientia Hort 220:20–26CrossRefGoogle Scholar
  172. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Green NR. Ascorbic acid and provitamin (1997) A contents in unusually colored bell peppers (Capsicum annuum L.). J Food Compos Anal 10:299–311Google Scholar
  173. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897PubMedCrossRefGoogle Scholar
  174. Stewart C, Kang BC, Liu K et al (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688PubMedCrossRefGoogle Scholar
  175. Stewart C, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in Capsicum chinense via the Pun1 locus. J Exp Bot 58:979–991PubMedCrossRefGoogle Scholar
  176. Sugita T, Semi Y, Sawada H, Utoyama Y et al (2013) Development of simple sequence repeat markersand construction of a high-density linkage map of Capsicum annuum. Mol Breed 31:909–920CrossRefGoogle Scholar
  177. Suwor P, Sanitchona J, Thummabenjapone P, Kumar S, Techawongstien S (2017) Inheritance analysis of anthracnose resistance and marker-assisted selection in introgression populations of chili (Capsicum annuum L.) Scientia Hort 220:20–26CrossRefGoogle Scholar
  178. Swindell WR, Huuebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock protein and transcription factor reveals extensive overlap between heat and non heat stress response pathway. BMC Genomics 8:125PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tai T, Dahlbeck D, Stall RE, Peleman J, Staskawicz BJ (1999) High-resolution genetic and physical mapping of the region containing the Bs2 resistance gene of pepper. Theor Appl Genet 99:1201–1206CrossRefGoogle Scholar
  180. Tan S, Cheng J-W, Zhang L, Qin C, Nong D-G, Li W-P et al (2015) Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordia in Pepper (Capsicum spp.) PLoS One 10(3):e0119389PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423PubMedPubMedCentralCrossRefGoogle Scholar
  182. Tao L, Zeba N, Ashrafuzzaman M, Hong CB (2011) Heavy metal stress-inducible early light-inducible gene CaELIP from hot pepper (Capsicum annuum) shows broad expression patterns under various abiotic stresses and circadian rhythmicity. Environ Exp Bot 72:297–303CrossRefGoogle Scholar
  183. Thabuis A, Palloix A, Servin B, Daubèze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20.  https://doi.org/10.1023/B:MOLB.0000037991.38278.82CrossRefGoogle Scholar
  184. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  185. Thies JA, Fery RL (2000) Characterization of resistance conferred by the N gene to Meloidogyne arenaria races 1 and 2, M. hapla, and M. javanica in two sets of isogenic lines of Capsicum annuum. J Am Soc Hort Sci 125:71–75Google Scholar
  186. Thies JA, Fery RL (2002) Heat stability of resistance to Southern root-knot nematode in bell pepper genotypes homozygous and heterozygous for the N gene. J Am Soc Hort Sci 127:371–375Google Scholar
  187. Tomita R, Murai J, Miura Y et al (2008) Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor Appl Genet 117:1107–1118PubMedPubMedCentralCrossRefGoogle Scholar
  188. Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris A (2011) Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  189. Vallejos CE, Jones V, Stall RE et al (2010) Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor Appl Genet 121:37–46PubMedCrossRefGoogle Scholar
  190. Voorips RE, Finkers R, Lia S (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between. Capsicum annuum and C. chinense. Theor Appl Genet 109:1275–1282CrossRefGoogle Scholar
  191. Vurukonda SSKP, Vardharajula S, Shrivastava M, Sk ZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefGoogle Scholar
  192. Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and management of heat stress in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 135–157CrossRefGoogle Scholar
  193. Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004) QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theor Appl Genet 109:1058–1063PubMedCrossRefGoogle Scholar
  194. Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:237–242CrossRefGoogle Scholar
  195. Wang JE, Liu KK, Li DW, Zhang YL, Zhao Q, Gong ZH, He YM (2013) A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance. Int J Mol Sci 14(2):3158–3177PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wang P, Liu X, Guo J, Liu C, Fu N, Shen H (2015) Identification and expression analysis of candidate genes associated with defense responses to phytophthoracapsici in pepper line “PI 201234”. Int J Mol Sci 16:11417–11438PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wang H, Niu H, Zhai Y, Lu M (2017) Characterization of BiP genes from pepper (Capsicum annuum L.) and the role of CaBip1 in response to endoplasmic reticulum and multiple abiotic stresses. Front Plant Sci 8:1122PubMedPubMedCentralCrossRefGoogle Scholar
  198. Warren G, McKown R, Marin AL, Teutonico R (1996) Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol 111:1011–1019PubMedPubMedCentralCrossRefGoogle Scholar
  199. Widana Gamage SMK, McGrath DJ, Persley DM, Dietzgen RG (2016) Transcriptome Analysis of Capsicum chlorosis virus-induced hypersensitive resistance response in bell capsicum. PLoS One 11(7):e0159085PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wollenweber, Porter JR, Schellber J (2003) Lack of interaction between extreme high temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150CrossRefGoogle Scholar
  201. Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293PubMedCrossRefGoogle Scholar
  203. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  204. Xu X, Chao J, Cheng X et al (2016) Mapping of a novel race specific resistance gene to Phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS One 11(3):e0151401PubMedPubMedCentralCrossRefGoogle Scholar
  205. Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527CrossRefGoogle Scholar
  206. Yao M, Li N, Wang F, Ye Z (2013) Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper (Capsicum annuum L.) Euphytica 193:135–145CrossRefGoogle Scholar
  207. Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A (2013) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56(1):61–74PubMedCrossRefGoogle Scholar
  208. Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D (2004) The Pepper Transcription Factor CaPF1 Confers Pathogen and Freezing Tolerance in Arabidopsis. Plant Physiol 136:2862–2874PubMedPubMedCentralCrossRefGoogle Scholar
  209. Yi G, Lee J, Lee S, Choi D, Kim B-D (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130PubMedCrossRefGoogle Scholar
  210. Ying SC, Li MS, Hai ZZ, Alain P, Hao WL, Xi ZB (2015) Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hortic 181:81–88Google Scholar
  211. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836PubMedPubMedCentralCrossRefGoogle Scholar
  212. Zhang YL, Jia QL, Li DW, Wang JE, Yin YX, Gong ZH (2013) Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian. Int J Mol Sci 14:8985–9004PubMedPubMedCentralCrossRefGoogle Scholar
  213. Zheng Z, Nonomura T, Appiano M et al (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8(7):e70723PubMedPubMedCentralCrossRefGoogle Scholar
  214. Zhu JK, (2007) Plant salt stress. WileyGoogle Scholar
  215. Zong HX (2013) Construction of a molecular linkage map and QTL analysis on fruit-related traits in pepper. Jiangxi Agricultural University (in Chinese with English Abstract)Google Scholar
  216. Zygier S, Ben Chaim A, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sushil Satish Chhapekar
    • 1
  • Vandana Jaiswal
    • 1
  • Ilyas Ahmad
    • 1
  • Rashmi Gaur
    • 1
  • Nirala Ramchiary
    • 1
  1. 1.Translational and Evolutionary Genomics Lab, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations