Advanced Miniature Microscopy for Brain Imaging

  • Weijian Zong
  • Liangyi Chen
Part of the Progress in Optical Science and Photonics book series (POSP, volume 5)


To image neuronal activities down to single spines in freely behaving animal has already been the holy grail of neuroscientists. To achieve that goal, two-photon microscope must be miniaturized to be attached to the animal without interfering animal movements. In the past fifteen years, many groups have published different designs, albeit that none of them is not widely used by the neuroscience community. Here, we have summarized the major challenges that prevent prevalent applications of current miniature two-photon microscopy (TPM) for high-resolution imaging in freely behaving mice, and different configurations that may be used to address each challenge. Based on this theoretical analysis, we have provided detailed design of our high-resolution, miniaturized two-photon microscope (FHIRM-TPM) and its latest revisions that enable volumetric imaging capability and larger field of view and deeper penetration depth.


Two-photon microscopy Neural function Miniature microscope 


  1. 1.
    M. Minderer, C.D. Harvey, F. Donato, E.I. Moser, Neuroscience: virtual reality explored. Nature 533(7603), 324–325 (2016). Scholar
  2. 2.
    Z.M. Aghajan, L. Acharya, J.J. Moore, J.D. Cushman, C. Vuong, M.R. Mehta, Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18(1), 121–128 (2015). Scholar
  3. 3.
    E.J. Hamel, B.F. Grewe, J.G. Parker, M.J. Schnitzer, Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86(1), 140–159 (2015). Scholar
  4. 4.
    C.K. Kim, S.J. Yang, N. Pichamoorthy, N.P. Young, I. Kauvar, J.H. Jennings, T.N. Lerner, A. Berndt, S.Y. Lee, C. Ramakrishnan, T.J. Davidson, M. Inoue, H. Bito, K. Deisseroth, Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13(4), 325–328 (2016). Scholar
  5. 5.
    I. Ferezou, S. Bolea, C.C. Petersen, Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50(4), 617–629 (2006). Scholar
  6. 6.
    K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A.E. Gamal, M.J. Schnitzer, Miniaturized integration of a fluorescence microscope. Nat. Methods 8(10), 871–878 (2011). Scholar
  7. 7.
    Z. Gorocs, Y. Rivenson, H. Ceylan Koydemir, D. Tseng, T.L. Troy, V. Demas, A. Ozcan, Quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media using mobile microscopy. ACS Nano 10(9), 8989–8999 (2016). Scholar
  8. 8.
    F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope. Neuron 31(6), 903–912 (2001). Scholar
  9. 9.
    C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16(8), 5556 (2008). Scholar
  10. 10.
    W. Piyawattanametha, E.D. Cocker, L.D. Burns, R.P.J. Barretto, J.C. Jung, H. Ra, O. Solgaard, M.J. Schnitzer, In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt. Lett. 34(15), 2309 (2009). Scholar
  11. 11.
    J. Sawinski, D.J. Wallace, D.S. Greenberg, S. Grossmann, W. Denk, J.N.D. Kerr, Visually evoked activity in cortical cells imaged in freely moving animals. Proc. Natl. Acad. Sci. 106(46), 19557–19562 (2009). Scholar
  12. 12.
    W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, H. Cheng, Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14(7), 713–719 (2017). Scholar
  13. 13.
    D.R. Rivera, C.M. Brown, D.G. Ouzounov, I. Pavlova, D. Kobat, W.W. Webb, C. Xu, Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc. Natl. Acad. Sci. U. S. A. 108(43), 17598–17603 (2011). Scholar
  14. 14.
    Y. Zhang, M.L. Akins, K. Murari, J. Xi, M.J. Li, K. Luby-Phelps, M. Mahendroo, X. Li, A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. Proc. Natl. Acad. Sci. U. S. A. 109(32), 12878–12883 (2012). Scholar
  15. 15.
    F. Helmchen, D.W. Tank, W. Denk, Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl. Opt. 41(15), 2930 (2002). Scholar
  16. 16.
    G.P. Agrawal, Applications of nonlinear fiber optics. Optics and Photonics (2001)Google Scholar
  17. 17.
    W. Gobel, A. Nimmerjahn, F. Helmchen, Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29(11), 1285–1287 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Wang, N. Ji, Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Opt. Express 21(22), 27142–27154 (2013). Scholar
  19. 19.
    Sawinski Jr, W. Denk, Miniature random-access fiber scanner for in vivo multiphoton imaging. J. Appl. Phys. 102(3), 034701 (2007). Scholar
  20. 20.
    M.T. Myaing, D.J. MacDonald, X. Li, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31(8), 1076 (2006). Scholar
  21. 21.
    W. Piyawattanametha, R.P.J. Barretto, T.H. Ko, B.A. Flusberg, E.D. Cocker, H. Ra, D. Lee, O. Solgaard, M.J. Schnitzer, Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. Opt. Lett. 31(13), 2018 (2006). Scholar
  22. 22.
    W. Jung, S. Tang, D.T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I.V. Tomov, T.B. Krasieva, B.J. Tromberg, Z. Chen, Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33(12), 1324 (2008). Scholar
  23. 23.
    A. Grayson, A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 6–21 (2004)CrossRefGoogle Scholar
  24. 24.
    V. Milanovic, Gimbal-less monolithic silicon actuators for tip–tilt–piston micromirror applications. J. Sel. Topics Quantum Electron. 10(3), 462–471 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Prakash, O. Yizhar, B. Grewe, C. Ramakrishnan, N. Wang, I. Goshen, A.M. Packer, D.S. Peterka, R. Yuste, M.J. Schnitzer, K. Deisseroth, Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9(12), 1171–1179 (2012). Scholar
  26. 26.
    J.P. Rickgauer, K. Deisseroth, D.W. Tank, Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17(12), 1816–1824 (2014). Scholar
  27. 27.
    G. Matz, B. Messerschmidt, H. Gross, Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view. Opt. Express 24(10), 10987–11001 (2016). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular MedicinePeking UniversityBeijingChina

Personalised recommendations