Patterned Two-Photon Illumination for High-Speed Functional Imaging of Brain Networks In Vivo

  • Serena Bovetti
  • Claudio Moretti
  • Tommaso Fellin
Part of the Progress in Optical Science and Photonics book series (POSP, volume 5)


Two-photon functional imaging combined with optogenetic manipulation represents a powerful tool to investigate neural network function and how the activity of specific circuits drives behavior. To fulfill these goals, imaging methods should ideally have a temporal resolution close to the temporal scale of neural activity (i.e., in the millisecond range). Classical laser-scanning two-photon microscopy, however, relies on beam deflection by galvanometric mirrors whose inertia, as well as the time the beam dwells on each image pixel, severely limits its temporal resolution. In this chapter, we focus on one approach to high-speed fluorescence recording, namely scanless imaging using patterned two-photon illumination. We will discuss recent evidence showing that this technique can be used to perform high-speed (up to 1 kHz) recording of calcium signals hundreds of micrometers deep in the rodent brain. Moreover, we describe the combination of scanless imaging with single-photon optogenetic manipulation for all-optical readout and perturbation of brain networks and with microendoscopic imaging for high-speed monitoring of circuit dynamics in deeper brain areas. Finally, we discuss the advantages and limitations of scanless imaging as well as possible future technical improvements that will likely contribute to significantly increasing our understanding of the role of neural networks in driving brain function and behavior.



We thank members of the Fellin laboratory for helpful comments on the manuscript. This work was supported by the ERC (NEURO-PATTERNS), NIH (1U01NS090576-01), FP7 (DESIRE), and, in part, from Flag-Era JTC Human Brain Project (SLOW-DYN) to TF.

Competing financial interests The authors declare no competing financial interests.


  1. 1.
    M.B. Ahrens, M.B. Orger, D.N. Robson, J.M. Li, P.J. Keller, Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10(5), 413–420 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Akerboom, C.N. Carreras, L. Tian, S. Wabnig, M. Prigge, J. Tolo, A. Gordus, M.B. Orger, K.E. Severi, J.J. Macklin, R. Patel, S.R. Pulver, T.J. Wardill, E. Fischer, C. Schuler, T.W. Chen, K.S. Sarkisyan, J.S. Marvin, C.I. Bargmann, D.S. Kim, S. Kugler, L. Lagnado, P. Hegemann, A. Gottschalk, E.R. Schreiter, L.L. Looger, Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol. Neurosci. 6, 2 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Akerboom, T.W. Chen, T.J. Wardill, L. Tian, J.S. Marvin, S. Mutlu, N.C. Calderon, F. Esposti, B.G. Borghuis, X.R. Sun, A. Gordus, M.B. Orger, R. Portugues, F. Engert, J.J. Macklin, A. Filosa, A. Aggarwal, R.A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B.S. Khakh, H. Baier, L. Lagnado, S.S. Wang, C.I. Bargmann, B.E. Kimmel, V. Jayaraman, K. Svoboda, D.S. Kim, E.R. Schreiter, L.L. Looger, Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32(40), 13819–13840 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Anselmi, C. Ventalon, A. Begue, D. Ogden, V. Emiliani, Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Natl. Acad. Sci. U.S.A. 108(49), 19504–19509 (2011)CrossRefGoogle Scholar
  5. 5.
    B.V. Atallah, W. Bruns, M. Carandini, M. Scanziani, Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73(1), 159–170 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Badura, X.R. Sun, A. Giovannucci, L.A. Lynch, S.S. Wang, Fast calcium sensor proteins for monitoring neural activity. Neurophotonics 1(2), 025008 (2014)CrossRefGoogle Scholar
  7. 7.
    R.P. Barretto, B. Messerschmidt, M.J. Schnitzer, In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6(7), 511–512 (2009)CrossRefGoogle Scholar
  8. 8.
    R.P. Barretto, M.J. Schnitzer, In vivo microendoscopy of the hippocampus. Cold Spring Harb. Protoc. 2012(10), 1092–1099 (2012)Google Scholar
  9. 9.
    J.N. Betley, S. Xu, Z.F. Cao, R. Gong, C.J. Magnus, Y. Yu, S.M. Sternson, Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521(7551), 180–185 (2015)CrossRefGoogle Scholar
  10. 10.
    M.E. Bocarsly, W.C. Jiang, C. Wang, J.T. Dudman, N. Ji, Y. Aponte, Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6(11), 4546–4556 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Bovetti, T. Fellin, Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J. Neurosci. Methods 241, 66–77 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Bovetti, C. Moretti, T. Fellin, Mapping brain circuit function in vivo using two-photon fluorescence microscopy. Microsc. Res. Tech. 77(7), 492–501 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Bovetti, C. Moretti, S. Zucca, M.M. Dal, P. Bonifazi, T. Fellin, Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain. Sci. Rep. 7, 40041 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Carrillo-Reid, W. Yang, Y. Bando, D.S. Peterka, R. Yuste, Imprinting and recalling cortical ensembles. Science 353(6300), 691–694 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Chaigneau, E. Ronzitti, M.A. Gajowa, G.J. Soler-Llavina, D. Tanese, A.Y. Brureau, E. Papagiakoumou, H. Zeng, V. Emiliani, Two-photon holographic stimulation of ReaChR. Front Cell Neurosci. 10, 234 (2016)CrossRefGoogle Scholar
  16. 16.
    T.W. Chen, T.J. Wardill, Y. Sun, S.R. Pulver, S.L. Renninger, A. Baohan, E.R. Schreiter, R.A. Kerr, M.B. Orger, V. Jayaraman, L.L. Looger, K. Svoboda, D.S. Kim, Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295–300 (2013)CrossRefGoogle Scholar
  17. 17.
    B.Y. Chow, X. Han, A.S. Dobry, X. Qian, A.S. Chuong, M. Li, M.A. Henninger, G.M. Belfort, Y. Lin, P.E. Monahan, E.S. Boyden, High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277), 98–102 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Dal Maschio, A.M. De Stasi, F. Benfenati, T. Fellin, Three-dimensional in vivo scanning microscopy with inertia-free focus control. Opt. Lett. 36(17), 3503–3505 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Dal Maschio, F. Difato, R. Beltramo, A. Blau, F. Benfenati, T. Fellin, Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt. Express 18(18), 18720–18731 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Dal Maschio, F. Difato, R. Beltramo, A.M. De Stasi, A. Blau, T. Fellin, Optical investigation of brain networks using structured illumination, in Cellular Imaging Techniques for Neuroscience and Beyond, ed. by F.G. Wouterlood (Elsevier, Amsterdam, 2012)CrossRefGoogle Scholar
  21. 21.
    M. Dal Maschio, J.C. Donovan, T.O. Helmbrecht, H. Baier, Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron 94(4), 774–789 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J.P. Hasseman, G. Tsegaye, G.T. Holt, A. Hu, D. Walpita, R. Patel, J.J. Macklin, C.I. Bargmann, M.B. Ahrens, E.R. Schreiter, V. Jayaraman, L.L. Looger, K. Svoboda, D.S. Kim, Sensitive red protein calcium indicators for imaging neural activity. Elife. 5 (2016)Google Scholar
  23. 23.
    R. Di Leonardo, F. Ianni, G. Ruocco, Computer generation of optimal holograms for optical trap arrays. Opt. Express 15(4), 1913–1922 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Difato, M. Dal Maschio, R. Beltramo, A. Blau, F. Benfenati, T. Fellin, Spatial light modulators for complex spatio-temporal illumination of neuronal networks, in Neuronal Network Analysis: Concepts and Experimental Approaches, ed. by T. Fellin, M.M. Halassa (Springer, Berlin, 2012)Google Scholar
  25. 25.
    H.U. Dodt, U. Leischner, A. Schierloh, N. Jahrling, C.P. Mauch, K. Deininger, J.M. Deussing, M. Eder, W. Zieglgansberger, K. Becker, Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Meth. 4(4), 331–336 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Ducros, H.Y. Goulam, J. Bradley, V. de Sars, S. Charpak, Encoded multisite two-photon microscopy. Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013)CrossRefGoogle Scholar
  27. 27.
    R.G. Duemani, K. Kelleher, R. Fink, P. Saggau, Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11(6), 713–720 (2008)CrossRefGoogle Scholar
  28. 28.
    U. Efron, Spatial Light Modulator Technology: Material, Devices and Applications New York (Marcel Dekker Inc., NY, 1994)Google Scholar
  29. 29.
    O. Fajardo, P. Zhu, R.W. Friedrich, Control of a specific motor program by a small brain area in zebrafish. Front Neural Circ. 7, 67 (2013)Google Scholar
  30. 30.
    T. Fernandez-Alfonso, K.M. Nadella, M.F. Iacaruso, B. Pichler, H. Ros, P.A. Kirkby, R.A. Silver, Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J. Neurosci. Methods 222, 69–81 (2014)CrossRefGoogle Scholar
  31. 31.
    J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)CrossRefGoogle Scholar
  32. 32.
    A. Forli, D. Vecchia, N. Binini, F. Succol, S. Bovetti, C. Moretti, F. Nespoli, M. Mahn, C.A. Baker, M.M. Bolton, O. Yizhar, T. Fellin, Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep. 22(11), 3087–3098 (2018). Scholar
  33. 33.
    D. Gandolfi, P. Pozzi, M. Tognolina, G. Chirico, J. Mapelli, E. D’Angelo, The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons. Front Cell Neurosci. 8, 92 (2014)Google Scholar
  34. 34.
    M.A. Go, C. Stricker, S. Redman, H.A. Bachor, V.R. Daria, Simultaneous multi-site two-photon photostimulation in three dimensions. J. Biophotonics 5(10), 745–753 (2012)CrossRefGoogle Scholar
  35. 35.
    M.A. Go, M.S. To, C. Stricker, S. Redman, H.A. Bachor, G.J. Stuart, V.R. Daria, Four-dimensional multi-site photolysis of caged neurotransmitters. Front Cell Neurosci. 7, 231 (2013)CrossRefGoogle Scholar
  36. 36.
    J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts & Company Publishers, Greenwood Village, 2005)Google Scholar
  37. 37.
    B.F. Grewe, F. Helmchen, Optical probing of neuronal ensemble activity. Curr. Opin. Neurobiol. 19(5), 520–529 (2009)CrossRefGoogle Scholar
  38. 38.
    B.F. Grewe, D. Langer, H. Kasper, B.M. Kampa, F. Helmchen, High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7(5), 399–405 (2010)CrossRefGoogle Scholar
  39. 39.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)CrossRefGoogle Scholar
  40. 40.
    T.F. Holekamp, D. Turaga, T.E. Holy, Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57(5), 661–672 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Inoue, A. Takeuchi, S. Horigane, M. Ohkura, K. Gengyo-Ando, H. Fujii, S. Kamijo, S. Takemoto-Kimura, M. Kano, J. Nakai, K. Kitamura, H. Bito, Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat. Methods 12(1), 64–70 (2015)CrossRefGoogle Scholar
  42. 42.
    J.H. Jennings, R.L. Ung, S.L. Resendez, A.M. Stamatakis, J.G. Taylor, J. Huang, K. Veleta, P.A. Kantak, M. Aita, K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, G.D. Stuber, Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160(3), 516–527 (2015)CrossRefGoogle Scholar
  43. 43.
    N. Ji, Adaptive optical fluorescence microscopy. Nat. Methods 14(4), 374–380 (2017)CrossRefGoogle Scholar
  44. 44.
    N. Ji, D.E. Milkie, E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Method 7(2), 141–147 (2010)CrossRefGoogle Scholar
  45. 45.
    K. Kam, J.W. Worrell, C. Ventalon, V. Emiliani, J.L. Feldman, Emergence of population bursts from simultaneous activation of small subsets of preBotzinger complex inspiratory neurons. J. Neurosci. 33(8), 3332–3338 (2013)CrossRefGoogle Scholar
  46. 46.
    G. Katona, G. Szalay, P. Maak, A. Kaszas, M. Veress, D. Hillier, B. Chiovini, E.S. Vizi, B. Roska, B. Rozsa, Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9(2), 201–208 (2012)CrossRefGoogle Scholar
  47. 47.
    P.J. Keller, M.B. Ahrens, Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85(3), 462–483 (2015)CrossRefGoogle Scholar
  48. 48.
    C.K. Kim, A. Adhikari, K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18(4), 222–235 (2017)CrossRefGoogle Scholar
  49. 49.
    J.K. Kim, W.M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, S.H. Yun, Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals. Nat. Protoc. 7(8), 1456–1469 (2012)CrossRefGoogle Scholar
  50. 50.
    N.C. Klapoetke, Y. Murata, S.S. Kim, S.R. Pulver, A. Birdsey-Benson, Y.K. Cho, T.K. Morimoto, A.S. Chuong, E.J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B.Y. Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G.K. Wong, E.S. Boyden, Independent optical excitation of distinct neural populations. Nat. Methods 11(3), 338–346 (2014)CrossRefGoogle Scholar
  51. 51.
    T. Knopfel, Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13(10), 687–700 (2012)CrossRefGoogle Scholar
  52. 52.
    S.H. Lee, A.C. Kwan, S. Zhang, V. Phoumthipphavong, J.G. Flannery, S.C. Masmanidis, H. Taniguchi, Z.J. Huang, F. Zhang, E.S. Boyden, K. Deisseroth, Y. Dan, Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488(7411), 379–383 (2012)CrossRefGoogle Scholar
  53. 53.
    J.Y. Lin, P.M. Knutsen, A. Muller, D. Kleinfeld, R.Y. Tsien, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16(10), 1499–1508 (2013)CrossRefGoogle Scholar
  54. 54.
    M.Z. Lin, M.J. Schnitzer, Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19(9), 1142–1153 (2016)CrossRefGoogle Scholar
  55. 55.
    R. Lu, W. Sun, Y. Liang, A. Kerlin, J. Bierfeld, J.D. Seelig, D.E. Wilson, B. Scholl, B. Mohar, M. Tanimoto, M. Koyama, D. Fitzpatrick, M.B. Orger, N. Ji, Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20(4), 620–628 (2017)CrossRefGoogle Scholar
  56. 56.
    C. Lutz, T.S. Otis, V. DeSars, S. Charpak, D.A. DiGregorio, V. Emiliani, Holographic photolysis of caged neurotransmitters. Nat. Methods 5(9), 821–827 (2008)CrossRefGoogle Scholar
  57. 57.
    C. Moretti, A. Antonini, S. Bovetti, C. Liberale, T. Fellin, Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses. Biomed. Opt. Express 7(10), 3958–3967 (2016)CrossRefGoogle Scholar
  58. 58.
    K.M. Nadella, H. Ros, C. Baragli, V.A. Griffiths, G. Konstantinou, T. Koimtzis, G.J. Evans, P.A. Kirkby, R.A. Silver, Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat. Methods 13, 1001 (2016)CrossRefGoogle Scholar
  59. 59.
    G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. U.S.A 100(24), 13940–13945 (2003)CrossRefGoogle Scholar
  60. 60.
    V. Nikolenko, D.S. Peterka, R. Araya, A. Woodruff, R. Yuste, Spatial light modulator microscopy. Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013)CrossRefGoogle Scholar
  61. 61.
    V. Nikolenko, B.O. Watson, R. Araya, A. Woodruff, D.S. Peterka, R. Yuste, SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circ. 2, 5–19 (2008)Google Scholar
  62. 62.
    A.M. Packer, D.S. Peterka, J.J. Hirtz, R. Prakash, K. Deisseroth, R. Yuste, Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9(12), 1202–1205 (2012)CrossRefGoogle Scholar
  63. 63.
    A.M. Packer, L.E. Russell, H.W. Dalgleish, M. Hausser, Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 2, 140–146 (2015)CrossRefGoogle Scholar
  64. 64.
    T. Panier, S.A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, G. Debregeas, Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front Neural Circ. 7, 65 (2013)Google Scholar
  65. 65.
    S. Panzeri, C.D. Harvey, E. Piasini, P.E. Latham, T. Fellin, Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93(3), 491–507 (2017)CrossRefGoogle Scholar
  66. 66.
    E. Papagiakoumou, F. Anselmi, A. Begue, V. de Sars, J. Gluckstad, E.Y. Isacoff, V. Emiliani, Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7(10), 848–854 (2010)CrossRefGoogle Scholar
  67. 67.
    E.A. Pnevmatikakis, D. Soudry, Y. Gao, T.A. Machado, J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. Yang, M. Ahrens, R. Bruno, T.M. Jessell, D.S. Peterka, R. Yuste, L. Paninski, Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2), 285–299 (2016)CrossRefGoogle Scholar
  68. 68.
    K. Podgorski, G. Ranganathan, Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116(3), 1012–1023 (2016)CrossRefGoogle Scholar
  69. 69.
    R. Prevedel, Y.G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrodel, R. Raskar, M. Zimmer, E.S. Boyden, A. Vaziri, Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11(7), 727–730 (2014)CrossRefGoogle Scholar
  70. 70.
    S. Quirin, J. Jackson, D.S. Peterka, R. Yuste, Simultaneous imaging of neural activity in three dimensions. Front Neural Circ. 8, 29 (2014)Google Scholar
  71. 71.
    S. Quirin, D.S. Peterka, R. Yuste, Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging. Opt. Express 21(13), 16007–16021 (2013)CrossRefGoogle Scholar
  72. 72.
    P. Rajasethupathy, E. Ferenczi, K. Deisseroth, Targeting neural circuits. Cell 165(3), 524–534 (2016)CrossRefGoogle Scholar
  73. 73.
    P. Rajasethupathy, S. Sankaran, J.H. Marshel, C.K. Kim, E. Ferenczi, S.Y. Lee, A. Berndt, C. Ramakrishnan, A. Jaffe, M. Lo, C. Liston, K. Deisseroth, Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575), 653–659 (2015)CrossRefGoogle Scholar
  74. 74.
    J.P. Rickgauer, K. Deisseroth, D.W. Tank, Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17(12), 1816–1824 (2014)CrossRefGoogle Scholar
  75. 75.
    S. Rotter, S. Gigan, Light fields in complex media: mesoscopic scattering meets wave control. Rev Mod Phys 89, 015005 (2017)CrossRefGoogle Scholar
  76. 76.
    T. Schrodel, R. Prevedel, K. Aumayr, M. Zimmer, A. Vaziri, Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10(10), 1013–1020 (2013)CrossRefGoogle Scholar
  77. 77.
    V.A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, New York, 2002)Google Scholar
  78. 78.
    X.R. Sun, A. Badura, D.A. Pacheco, L.A. Lynch, E.R. Schneider, M.P. Taylor, I.B. Hogue, L.W. Enquist, M. Murthy, S.S. Wang, Fast GCaMPs for improved tracking of neuronal activity. Nat. Commun. 4, 2170 (2013)CrossRefGoogle Scholar
  79. 79.
    V. Szabo, C. Ventalon, V. de Sars, J. Bradley, V. Emiliani, Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron 84(6), 1157–1169 (2014)CrossRefGoogle Scholar
  80. 80.
    G. Szalay, L. Judak, G. Katona, K. Ocsai, G. Juhasz, M. Veress, Z. Szadai, A. Feher, T. Tompa, B. Chiovini, P. Maak, B. Rozsa, Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals. Neuron 92(4), 723–738 (2016)CrossRefGoogle Scholar
  81. 81.
    O.D. Therrien, B. Aube, S. Pages, P.D. Koninck, D. Cote, Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination. Biomed. Opt. Express 2(3), 696–704 (2011)CrossRefGoogle Scholar
  82. 82.
    R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V.M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, K. Deisseroth, SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163(7), 1796–1806 (2015)CrossRefGoogle Scholar
  83. 83.
    R. Tomer, L. Ye, B. Hsueh, K. Deisseroth, Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9(7), 1682–1697 (2014)CrossRefGoogle Scholar
  84. 84.
    J.T. Vogelstein, B.O. Watson, A.M. Packer, R. Yuste, B. Jedynak, L. Paninski, Spike inference from calcium imaging using sequential Monte Carlo methods. Biophys. J. 97(2), 636–655 (2009)CrossRefGoogle Scholar
  85. 85.
    N.R. Wilson, C.A. Runyan, F.L. Wang, M. Sur, Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488(7411), 343–348 (2012)CrossRefGoogle Scholar
  86. 86.
    N.R. Wilson, J. Schummers, C.A. Runyan, S.X. Yan, R.E. Chen, Y. Deng, M. Sur, Two-way communication with neural networks in vivo using focused light. Nat. Protoc. 8(6), 1184–1203 (2013)CrossRefGoogle Scholar
  87. 87.
    B.A. Wilt, L.D. Burns, E.T. Wei Ho, K.K. Ghosh, E.A. Mukamel, M.J. Schnitzer, Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009)CrossRefGoogle Scholar
  88. 88.
    J. Wu, A.S. Abdelfattah, L.S. Miraucourt, E. Kutsarova, A. Ruangkittisakul, H. Zhou, K. Ballanyi, G. Wicks, M. Drobizhev, A. Rebane, E.S. Ruthazer, R.E. Campbell, A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. Nat. Commun. 5, 5262 (2014)CrossRefGoogle Scholar
  89. 89.
    S. Yang, V. Emiliani, C.M. Tang, The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons. Front Cell Neurosci. 8, 127 (2014)Google Scholar
  90. 90.
    S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C.M. Tang, V. Emiliani, Three-dimensional holographic photostimulation of the dendritic arbor. J. Neural Eng. 8(4), 046002 (2011)CrossRefGoogle Scholar
  91. 91.
    S.J. Yang, W.E. Allen, I. Kauvar, A.S. Andalman, N.P. Young, C.K. Kim, J.H. Marshel, G. Wetzstein, K. Deisseroth, Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Opt. Express 23(25), 32573–32581 (2015)CrossRefGoogle Scholar
  92. 92.
    W. Yang, J.E. Miller, L. Carrillo-Reid, E. Pnevmatikakis, L. Paninski, R. Yuste, D.S. Peterka, Simultaneous multi-plane imaging of neural circuits. Neuron 89(2), 269–284 (2016)CrossRefGoogle Scholar
  93. 93.
    W. Yang, R. Yuste, In vivo imaging of neural activity. Nat. Methods 14(4), 349–359 (2017)CrossRefGoogle Scholar
  94. 94.
    O. Yizhar, L.E. Fenno, M. Prigge, F. Schneider, T.J. Davidson, D.J. O’Shea, V.S. Sohal, I. Goshen, J. Finkelstein, J.T. Paz, K. Stehfest, R. Fudim, C. Ramakrishnan, J.R. Huguenard, P. Hegemann, K. Deisseroth, Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363), 171–178 (2011)CrossRefGoogle Scholar
  95. 95.
    F. Zhang, M. Prigge, F. Beyriere, S.P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, K. Deisseroth, Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11(6), 631–633 (2008)CrossRefGoogle Scholar
  96. 96.
    F. Zhang, J. Vierock, O. Yizhar, L.E. Fenno, S. Tsunoda, A. Kianianmomeni, M. Prigge, A. Berndt, J. Cushman, J. Polle, J. Magnuson, P. Hegemann, K. Deisseroth, The microbial opsin family of optogenetic tools. Cell 147(7), 1446–1457 (2011)CrossRefGoogle Scholar
  97. 97.
    Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y.F. Chang, M. Nakano, A.S. Abdelfattah, M. Fujiwara, T. Ishihara, T. Nagai, R.E. Campbell, An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051), 1888–1891 (2011)CrossRefGoogle Scholar
  98. 98.
    Y. Ziv, L.D. Burns, E.D. Cocker, E.O. Hamel, K.K. Ghosh, L.J. Kitch, G.A. El, M.J. Schnitzer, Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16(3), 264–266 (2013)CrossRefGoogle Scholar
  99. 99.
    S. Zucca, G. D’Urso, V. Pasquale, D. Vecchia, G. Pica, S. Bovetti, C. Moretti, S. Varani, M. Molano-Mazon, M. Chiappalone, S. Panzeri, T. Fellin, An inhibitory gate for state transition in cortex. Elife 6 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Serena Bovetti
    • 1
  • Claudio Moretti
    • 1
  • Tommaso Fellin
    • 1
  1. 1.Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain TechnologiesIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations