Advertisement

Optical Coherence Tomography for Brain Imaging

Chapter
Part of the Progress in Optical Science and Photonics book series (POSP, volume 5)

Abstract

Optical coherence tomography (OCT) is an imaging technique based on the detection of light back-reflected or backscattered by tissue. Based on the principles of low-coherence interferometry, OCT provides rapid volumetric imaging with micrometer-scale resolution. OCT has been massively successful in ophthalmology where it became a routine tool for retinal diagnostics. In recent years, however, OCT has also been applied to other fields including—amongst others—cardiovascular imaging, endoscopy of the gastrointestinal tract, and neuroimaging. In the brain and other neural tissues, OCT provides contrast for tissue microstructures and enables noninvasive in vivo and in vitro imaging with high resolution. Novel functional OCT approaches also reveal the cerebral microvasculature, measure blood oxygenation, and map the orientation of nerve fiber tracts. OCT has also shown potential for imaging neuropathology.

Notes

Acknowledgements

The author would like to express his gratitude to his colleagues at Medical University of Vienna, in particular to Christoph K. Hitzenberger, Michael Pircher, Erich Götzinger, Stanislava Fialová, Marco Augustin, Danielle J. Harper, Antonia Lichtenegger, Pablo Eugui, Andreas Wartak, Martina Muck, Gerda Ricken, Irene Leisser, Gabor G. Kovacs, Christian Mitter, Adelheid Wöhrer, Johannes A. Hainfellner, and Georg Widhalm. The author’s current work is funded by the Austrian Science Fund (FWF grant P25823-B24) and the European Research Council (ERC Starting Grant 640396 OPTIMALZ, optimalz.eu).

References

  1. 1.
    O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, P. Varlet, Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. NeuroImage: Clin. 2(1), 549–557 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Atry, S. Frye, T. Richner, S. Brodnick, A. Soehartono, J. Williams, R. Pashaie, Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography. IEEE Trans. Biomed. Eng. 62(2), 766–773 (2015)CrossRefGoogle Scholar
  3. 3.
    U. Baran, Y. Li, R. Wang, Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke. Neurophotonics 2(2), 025006 (2015)CrossRefGoogle Scholar
  4. 4.
    U. Baran, W. Zhu, W. Choi, M. Omori, W. Zhang, N. Alkayed, R. Wang, Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain. J. Neurosci. Methods 270, 132–137 (2016)CrossRefGoogle Scholar
  5. 5.
    B. Baumann, Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 7(5), 474 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Baumann, A. Woehrer, C. Mitter, G. Ricken, M. Augustin, M. Muck, M. Pircher, C.K. Hitzenberger, Polarization-sensitive optical coherence microscopy of human brain samples, in: Optics and the Brain (Optical Society of America, 2017), pp. BrW4B–3Google Scholar
  7. 7.
    B. Baumann, A. Woehrer, G. Ricken, M. Augustin, C. Mitter, M. Pircher, G.G. Kovacs, C.K. Hitzenberger, Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy. Sci. Rep. 7, 43477 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Ben Arous, J. Binding, J.F. Lger, M. Casado, P. Topilko, S. Gigan, A. Claude Boccara, L. Bourdieu, Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy. J. Biomed. Opt. 16(11) (2011)CrossRefGoogle Scholar
  9. 9.
    J. Binding, J. Ben Arous, J.F. Lger, S. Gigan, C. Boccara, L. Bourdieu, Brain refractive index measured in vivo with high-NA defocus-corrected full-field oct and consequences for two-photon microscopy. Opt. Express 19(6), 4833–4847 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. Reitsamer, J. Morgan, A. Cowey, Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 9(4), 719–724 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl et al., Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J. Biomed. Opt. 10(1), 011006–0110067 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B.M. Wegenast-Braun, T. Lasser, P.C. Fraering, Label-free imaging of cerebral \(\beta \)-amyloidosis with extended-focus optical coherence microscopy. J. Neurosci. 32(42), 14548–14556 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Boppart, B. Bouma, M. Brezinski, G. Tearney, J. Fujimoto, Imaging developing neural morphology using optical coherence tomography. J. Neurosci. Methods 70(1), 65–72 (1996)CrossRefGoogle Scholar
  14. 14.
    S. Boppart, M. Brezinski, C. Pitris, J. Fujimoto, Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery 43(4), 834–841 (1998)CrossRefGoogle Scholar
  15. 15.
    S. Boppart, M. Brezinski, G. Tearney, B. Bouma, J. Fujimoto, Imaging organogenesis with optical coherence tomography. FASEB J. 10(3), A825 (1996)Google Scholar
  16. 16.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1997)MATHGoogle Scholar
  17. 17.
    S. Chen, Q. Liu, X. Shu, B. Soetikno, S. Tong, H. Zhang, Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. Biomed. Opt. Express 7(9), 3377–3390 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Chen, T.E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J. van Gemert, J.S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical doppler tomography. Opt. Lett. 22(14), 1119–1121 (1997)CrossRefGoogle Scholar
  19. 19.
    Z. Chen, Y. Zhao, S. Srinivas, J. Nelson, N. Prakash, R. Frostig, Optical doppler tomography. IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999)CrossRefGoogle Scholar
  20. 20.
    W. Choi, Y. Li, W. Qin, R. Wang, Cerebral capillary velocimetry based on temporal oct speckle contrast. Biomed. Opt. Express 7(12), 4859–4873 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Choi, R. Wang, Swept-source optical coherence tomography powered by a 1.3-\(\mu \)m vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo. J. Biomed. Opt. 20(10) (2015)CrossRefGoogle Scholar
  22. 22.
    M.A. Choma, M.V. Sarunic, C. Yang, J.A. Izatt, Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)CrossRefGoogle Scholar
  23. 23.
    S.P. Chong, C.W. Merkle, D.F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, V.J. Srinivasan, Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 \(\mu \)m optical coherence tomography. Opt. Lett. 40(21), 4911–4914 (2015)CrossRefGoogle Scholar
  24. 24.
    J. De Boer, S. Srinivas, B. Park, T. Pham, Z. Chen, T. Milner, J. Nelson, Polarization effects in optical coherence tomography of various biological tissues. IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999)CrossRefGoogle Scholar
  25. 25.
    J.F. De Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)CrossRefGoogle Scholar
  26. 26.
    W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, R.A. Leitgeb, Optical coherence tomography today: speed, contrast, and multimodality. J. Biomed. Opt. 19(7), 071412 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Fercher, E. Roth, Ophthalmic laser interferometry. in Optical Instrumentation for Biomedical Laser Applications, vol. 658 (International Society for Optics and Photonics, 1986), pp. 48–52Google Scholar
  28. 28.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66(2), 239 (2003)CrossRefGoogle Scholar
  29. 29.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)CrossRefGoogle Scholar
  30. 30.
    C.J. Goergen, H. Radhakrishnan, S. Sakadžić, E.T. Mandeville, E.H. Lo, D.E. Sosnovik, V.J. Srinivasan, Optical coherence tractography using intrinsic contrast. Opt. Lett. 37(18), 3882–3884 (2012)CrossRefGoogle Scholar
  31. 31.
    X.F. He, Y.T. Liu, C. Peng, F. Zhang, S. Zhuang, J.S. Zhang, Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int. J. Ophthalmol. 5(3), 401 (2012)Google Scholar
  32. 32.
    C.K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9(13), 780–790 (2001)CrossRefGoogle Scholar
  33. 33.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178 (1991)CrossRefGoogle Scholar
  34. 34.
    A.G. Hudetz, Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 4(2), 233–252 (1997)CrossRefGoogle Scholar
  35. 35.
    J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, In vivo bidirectional color doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22(18), 1439–1441 (1997)CrossRefGoogle Scholar
  36. 36.
    J.A. Izatt, E.A. Swanson, J.G. Fujimoto, M.R. Hee, G.M. Owen, Optical coherence microscopy in scattering media. Opt. Lett. 19(8), 590–592 (1994)CrossRefGoogle Scholar
  37. 37.
    Y. Jia, L. An, R. Wang, Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact. J. Biomed. Opt. 15(3) (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J.J. Liu, M.F. Kraus, H. Subhash, J.G. Fujimoto, J. Hornegger et al., Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20(4), 4710–4725 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Jia, R.K. Wang, Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice. J. Neurosci. Methods 194(1), 108–115 (2010)CrossRefGoogle Scholar
  40. 40.
    L.W. Jin, K.A. Claborn, M. Kurimoto, M.A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminksy, B. Kahr, Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proc. Natl. Acad. Sci. 100(26), 15294–15298 (2003)CrossRefGoogle Scholar
  41. 41.
    T. Klein, R. Huber, High-speed OCT light sources and systems. Biomed. Opt. Express 8(2), 828–859 (2017)CrossRefGoogle Scholar
  42. 42.
    C. Kut, K.L. Chaichana, J. Xi, S.M. Raza, X. Ye, E.R. McVeigh, F.J. Rodriguez, A. Quiñones-Hinojosa, X. Li, Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med. 7(292), 292ra100 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Lee, Y. Gursoy-Ozdemir, B. Fu, D. Boas, T. Dalkara, Optical coherence tomography imaging of capillary reperfusion after ischemic stroke. Appl. Opt. 55(33), 9526–9531 (2016)CrossRefGoogle Scholar
  44. 44.
    J. Lee, H. Radhakrishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, D. Boas, Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography. J. Cereb. Blood Flow Metab. 33(6), 819–825 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Lee, W. Wu, D. Boas, Early capillary flux homogenization in response to neural activation. J. Cereb. Blood Flow Metab. 36(2), 375–380 (2016)CrossRefGoogle Scholar
  46. 46.
    R. Leitgeb, C. Hitzenberger, A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)CrossRefGoogle Scholar
  47. 47.
    C.K.S. Leung, Diagnosing glaucoma progression with optical coherence tomography. Curr. Opin. Ophthalmol. 25(2), 104–111 (2014)CrossRefGoogle Scholar
  48. 48.
    B. Li, J. Lee, D. Boas, F. Lesage, Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice. J. Cereb. Blood Flow Metab. 36(8), 1351–1356 (2016)CrossRefGoogle Scholar
  49. 49.
    F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, C. Zhou, Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy. Neurophotonics 1(2), 025002 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Lichtenegger, D.J. Harper, M. Augustin, P. Eugui, M. Muck, J. Gesperger, C.K. Hitzenberger, A. Woehrer, B. Baumann, Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples. Biomed. Opt. Express 8(9), 4007–4025 (2017)CrossRefGoogle Scholar
  51. 51.
    Q. Liu, S. Chen, B. Soetikno, W. Liu, S. Tong, H. Zhang, Monitoring acute stroke in mouse model using laser speckle imaging-guided visible-light optical coherence tomography. IEEE Trans. Biomed. Eng. (2017)Google Scholar
  52. 52.
    Z. Luo, Z. Yuan, M. Tully, Y. Pan, C. Du, Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and doppler optical coherence tomography. Appl. Opt. 48(10), D247–D255 (2009)CrossRefGoogle Scholar
  53. 53.
    C. Magnain, J. Augustinack, E. Konukoglu, M. Frosch, S. Sakadi, A. Varjabedian, N. Garcia, V. Wedeen, D. Boas, B. Fischl, Optical coherence tomography visualizes neurons in human entorhinal cortex. Neurophotonics 2(1) (2015)CrossRefGoogle Scholar
  54. 54.
    C. Magnain, J. Augustinack, M. Reuter, C. Wachinger, M. Frosch, T. Ragan, T. Akkin, V. Wedeen, D. Boas, B. Fischl, Blockface histology with optical coherence tomography: a comparison with nissl staining. NeuroImage 84, 524–533 (2014)CrossRefGoogle Scholar
  55. 55.
    S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14(17), 7821–7840 (2006)CrossRefGoogle Scholar
  56. 56.
    P. Marchand, A. Bouwens, T. Bolmont, V. Shamaei, D. Nguyen, D. Szlag, J. Extermann, T. Lasser, Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy. Biomed. Opt. Express 8(1), 1–15 (2017)CrossRefGoogle Scholar
  57. 57.
    C. Merkle, V. Srinivasan, Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by dynamic contrast optical coherence tomography. NeuroImage 125, 350–362 (2016)CrossRefGoogle Scholar
  58. 58.
    A. Petzold, J.F. de Boer, S. Schippling, P. Vermersch, R. Kardon, A. Green, P.A. Calabresi, C. Polman, Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 9(9), 921–932 (2010)CrossRefGoogle Scholar
  59. 59.
    C. Rodriguez, J. Szu, M. Eberle, Y. Wang, M. Hsu, D. Binder, B. Park, Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography. Neurophotonics 1(2) (2014)CrossRefGoogle Scholar
  60. 60.
    S. Roper, M. Moores, G. Gelikonov, F. Feldchtein, N. Beach, M. King, V. Gelikonov, A. Sergeev, D. Reitze, In vivo detection of experimentally induced cortical dysgenesis in the adult rat neocortex using optical coherence tomography. J. Neurosci. Methods 80(1), 91–98 (1998)CrossRefGoogle Scholar
  61. 61.
    J.S. Schuman, M.R. Hee, C.A. Puliafito, C. Wong, T. Pedut-Kloizman, C.P. Lin, E. Hertzmark, J.A. Izatt, E.A. Swanson, J.G. Fujimoto, Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Arch. Ophthalmol. 113(5), 586–596 (1995)CrossRefGoogle Scholar
  62. 62.
    V. Srinivasan, D. Atochin, H. Radhakrishnan, J. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. Cable, C. Ayata, P. Huang, D. Boas, Optical coherence tomography for the quantitative study of cerebrovascular physiology. J. Cereb. Blood Flow Metab. 31(6), 1339–1345 (2011)CrossRefGoogle Scholar
  63. 63.
    V. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J. Fujimoto, D. Boas, Quantitative cerebral blood flow with optical coherence tomography. Opt. Express 18(3), 2477–2494 (2010)CrossRefGoogle Scholar
  64. 64.
    V.J. Srinivasan, J.Y. Jiang, M.A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A.E. Cable, D.A. Boas, Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. Opt. Lett. 35(1), 43–45 (2010)CrossRefGoogle Scholar
  65. 65.
    V.J. Srinivasan, H. Radhakrishnan, J.Y. Jiang, S. Barry, A.E. Cable, Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast. Opt. Express 20(3), 2220–2239 (2012)CrossRefGoogle Scholar
  66. 66.
    J. Sun, S. Lee, L. Wu, M. Sarntinoranont, H. Xie, Refractive index measurement of acute rat brain tissue slices using optical coherence tomography. Opt. Express 20(2), 1084–1095 (2012)CrossRefGoogle Scholar
  67. 67.
    S. Tamborski, H. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, M. Szkulmowski, Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomed. Opt. Express 7(11), 4400–4414 (2016)CrossRefGoogle Scholar
  68. 68.
    B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain et al., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15(10), 1219–1223 (2009)CrossRefGoogle Scholar
  69. 69.
    B. Vuong, P. Skowron, T.R. Kiehl, M. Kyan, L. Garzia, C. Sun, M.D. Taylor, V.X. Yang, Measuring the optical characteristics of medulloblastoma with optical coherence tomography. Biomed. Opt. Express 6(4), 1487–1501 (2015)CrossRefGoogle Scholar
  70. 70.
    C. Wang, Y. Yang, Z. Ding, J. Meng, K. Wang, W. Yang, Y. Xu, Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography. J. Biomed. Opt. 16(4) (2011)CrossRefGoogle Scholar
  71. 71.
    H. Wang, A.J. Black, J. Zhu, T.W. Stigen, M.K. Al-Qaisi, T.I. Netoff, A. Abosch, T. Akkin, Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage 58(4), 984–992 (2011)CrossRefGoogle Scholar
  72. 72.
    H. Wang, J. Zhu, T. Akkin, Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. Neuroimage 84, 1007–1017 (2014)CrossRefGoogle Scholar
  73. 73.
    H. Wang, J. Zhu, M. Reuter, L.N. Vinke, A. Yendiki, D.A. Boas, B. Fischl, T. Akkin, Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata. Neuroimage 100, 395–404 (2014)CrossRefGoogle Scholar
  74. 74.
    R.K. Wang, L. An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express 17(11), 8926–8940 (2009)CrossRefGoogle Scholar
  75. 75.
    M. Wojtkowski, High-speed optical coherence tomography: basics and applications. Appl. Opt. 49(16), D30–D61 (2010)CrossRefGoogle Scholar
  76. 76.
    M. Yaseen, V. Srinivasan, S. Sakadzic, H. Radhakrishnan, I. Gorczynska, W. Wu, J. Fujimoto, D. Boas, Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation. J. Cereb. Blood Flow Metab. 31(4), 1051–1063 (2011)CrossRefGoogle Scholar
  77. 77.
    K. Yashin, E. Gubarkova, E. Kiseleva, S. Kuznetsov, M. Karabut, L. Timofeeva, N. Gladkova, L. Snopova, A. Moiseev, I. Medyanik et al., Ex vivo visualization of human gliomas with cross-polarization optical coherence tomography: pilot study. Mod. Technol. Med. 8(4(Eng)) (2016)CrossRefGoogle Scholar
  78. 78.
    J. You, C. Du, N. Volkow, Y. Pan, Optical coherence doppler tomography for quantitative cerebral blood flow imaging. Biomed. Opt. Express 5(9), 3217–3230 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Center for Medical Physics and Biomedical Engineering, Medical University of ViennaViennaAustria

Personalised recommendations