Multiscale and Multimodal Imaging for Connectomics

Part of the Progress in Optical Science and Photonics book series (POSP, volume 5)


Recent advances in optical imaging tools for mapping the structural and functional connectomes have greatly augmented our understanding of the brains. The brain is a multilayered and multicompartmental organ where the structures possess multiple length scales, ranging from nanometer (single synapses) to centimeter (whole intact organ), and its functions take place at multiple timescales, ranging from sub-milliseconds (synaptic events) to years (behavioral changes). Therefore, neuroscientists need to image neurocircuits not only at nanometric spatial resolution but also in millisecond time frame in large brain volumes to adequately study neuronal functions. An ideal tool for brain imaging should provide high speed, high resolution, and high contrast with deep penetration in large tissue volumes and sufficient molecular specificity. Toward this end, recent progresses in the optical brain imaging technologies have allowed extracting unprecedented insights into brain. In this chapter, we discuss the various imaging modalities aiming for high-throughput brain imaging, as well as the challenges encountered in imaging the connectome.


Large Tissue Volumes Light Sheet Fluorescence Microscopy (LSFM) Stimulated Emission Depletion (STED) Single-molecule Localization Microscopy (SMLM) Stochastic Optical Reconstruction Microscopy (STORM) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the Ministry of Science and Technology (MOST), Taiwan, and University Grants Commission (UGC), India, for their support to the biophotonics research projects at NYMU and JBC (UGC Grant No. F.5-376/2014-15/MRP/NERO/2181).


  1. 1.
    C.I. Bargmann, E. Marder, From the connectome to brain function. Nat. Methods 10(6), 483–490 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Kaiser, Neuroanatomy: connectome connects fly and mammalian brain networks. Curr. Biol. 25(10), R416–R418 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009)CrossRefGoogle Scholar
  4. 4.
    A.S. Chiang et al., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21(1), 1–11 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Helmstaedter, Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10(6), 501–507 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Silvestri, A.A. Mascaro, J. Lotti, L. Sacconi, F.S. Pavone, Advanced optical techniques to explore brain structure and function. J. Innovative Opt. Health Sci. 6(1), 1230002 (2013)CrossRefGoogle Scholar
  7. 7.
    A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014)CrossRefGoogle Scholar
  8. 8.
    T.E. Behrens, O. Sporns, Human connectomics. Curr. Opin. Neurobiol. 22(1), 144–153 (2012)CrossRefGoogle Scholar
  9. 9.
    J.L. Morgan, J.W. Lichtman, Why not connectomics? Nat. Methods 10(6), 494–500 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Yao, L.V. Wang, Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics 1(1), 011003 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Degenhardt et al., Global burden of disease attributable to illicit drug use and dependence: findings from the Global Burden of Disease Study 2010. Lancet 382(9904), 1564–1574 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Vos et al., Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2163–2196 (2012)CrossRefGoogle Scholar
  13. 13.
    J.W. Lichtman, W. Denk, The big and the small: challenges of imaging the brain’s circuits. Science 334(6056), 618–623 (2011)CrossRefGoogle Scholar
  14. 14.
    O. Sporns, Making sense of brain network data. Nat. Methods 10(6), 491–493 (2013)CrossRefGoogle Scholar
  15. 15.
    V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011)CrossRefGoogle Scholar
  16. 16.
    C.I. Bargmann, Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34(6), 458–465 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Alvarez-Castelao, E.M. Schuman, The regulation of synaptic protein turnover. J. Biol. Chem. 290(48), 28623–28630 (2015)CrossRefGoogle Scholar
  18. 18.
    M.P. Monopoli et al., Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 11(21), 4189–4201 (2011)CrossRefGoogle Scholar
  19. 19.
    S.J. Sigrist, B.L. Sabatini, Optical super-resolution microscopy in neurobiology. Cur. Opin. Neurobiol. 22(1), 86–93 (2012)CrossRefGoogle Scholar
  20. 20.
    B. Asrican et al., Next-generation transgenic mice for optogenetic analysis of neural circuits. Front. Neural Circuit 7 (2013)Google Scholar
  21. 21.
    W. Denk, K. Svoboda, Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997)CrossRefGoogle Scholar
  22. 22.
    N. Korogod, C.C. Petersen, G.W. Knott, Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4, e05793 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Hammond et al., Toxicological evaluation of proteins introduced into food crops. Crit. Rev. Toxicol. 43(Sup2), 25–42 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Asbury, Brain Imaging Technologies and Their Applications in Neuroscience (The Dana Foundation, New York, 2011), pp. 1–45Google Scholar
  25. 25.
    R.C. Craddock et al., Imaging human connectomes at the macroscale. Nat. Methods 10(6), 524–539 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Le Bihan, M. Iima, Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13(7), e1002203 (2015)CrossRefGoogle Scholar
  27. 27.
    B.A. Mueller, K.O. Lim, L. Hemmy, J. Camchong, Diffusion MRI and its role in neuropsychology. Neuropsychol. Rev. 25(3), 250–271 (2015)CrossRefGoogle Scholar
  28. 28.
    R.B. Buxton, The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 76(9), 096601 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Helmstaedter, K.L. Briggman, W. Denk, 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18(6), 633–641 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Dani, B. Huang, New resolving power for light microscopy: applications to neurobiology. Curr. Opin. Neurobiol. 20(5), 648–652 (2010)CrossRefGoogle Scholar
  31. 31.
    J.G. White, E. Southgate, J.N. Thomson, S. Brenner, The structure of the nervous system of the nematode Caenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. Lond 314, 1–340 (1986)CrossRefGoogle Scholar
  32. 32.
    K.L. Briggman, D.D. Bock, Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22(1), 154–161 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Gregorini, J. Wang, X.S. Xie, R.A. Milligan, A. Engel, Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J. Struct. Biol. 158(3), 445–454 (2007)CrossRefGoogle Scholar
  34. 34.
    L. Silvestri, A. Bria, L. Sacconi, G. Iannello, F.S. Pavone, Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20(18), 20582–20598 (2012)CrossRefGoogle Scholar
  35. 35.
    M.B. Ahrens, M.B. Orger, D.N. Robson, J.M. Li, P.J. Keller, Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10(5), 413–420 (2013)CrossRefGoogle Scholar
  36. 36.
    R. Kawakami et al., Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci. Rep. 3, srep01014 (2013)CrossRefGoogle Scholar
  37. 37.
    M.N. Economo et al., A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016)Google Scholar
  38. 38.
    S.W. Hell et al., Handbock of Biological Confocal Microscopy (Springer, New York, 2006), pp. 571–579CrossRefGoogle Scholar
  39. 39.
    S.W. Hell et al., The 2015 super-resolution microscopy roadmap. J. Phys. D Appl. Phys. 48(44), 44300 (2015)CrossRefGoogle Scholar
  40. 40.
    D.J. Smith, Ultimate resolution in the electron microscope? Mater. Today 11, 30–38 (2008)CrossRefGoogle Scholar
  41. 41.
    S.C. Sidenstein et al., Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016)CrossRefGoogle Scholar
  42. 42.
    P.A. Santi, Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59(2), 129–138 (2011)CrossRefGoogle Scholar
  43. 43.
    J.D. Manton, E.J. Rees, triSPIM: light sheet microscopy with isotropic super-resolution. Opt. Lett. 41(18), 4170–4173 (2016)CrossRefGoogle Scholar
  44. 44.
    R. Heintzmann, G. Ficz, Breaking the resolution limit in light microscopy. Briefings in Funct. Genomics 5(4), 289–301 (2006)CrossRefGoogle Scholar
  45. 45.
    X.L. Deán-Ben, H. López-Schier, D. Razansky, Optoacoustic micro-tomography at 100 volumes per second. Sci. Rep. 7(1), 6850 (2017)CrossRefGoogle Scholar
  46. 46.
    Z. Wu et al., Multi-photon microscopy in cardiovascular research. Methods 130, 79–89 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Chen et al., Review of advanced imaging techniques. J Pathol Inform 3, 22 (2012)CrossRefGoogle Scholar
  48. 48.
    G. Follain, L. Mercier, N. Osmani, S. Harlepp, J.G. Goetz, Seeing is believing–multi-scale spatio-temporal imaging towards in vivo cell biology. J. Cell Sci. 130(1), 23–38 (2017)CrossRefGoogle Scholar
  49. 49.
    M. Maglione, S.J. Sigrist, Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16(7), 790–797 (2013)CrossRefGoogle Scholar
  50. 50.
    L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190(2), 165–175 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Zhang et al., Diagnosis of gastroesophageal reflux disease using real-time magnetic resonance imaging. Scientific reports 5, 12112 (2015)CrossRefGoogle Scholar
  52. 52.
    X.L. Deán-Ben et al., Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5(12), e16201 (2016)CrossRefGoogle Scholar
  53. 53.
    Z. Zhi, W. Qin, J. Wang, W. Wei, R.K. Wang, 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source. Opt. Lett. 40(8), 1779–1782 (2015)CrossRefGoogle Scholar
  54. 54.
    S. Choi et al., Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second. Opt. Express 21(20), 23611–23618 (2013)CrossRefGoogle Scholar
  55. 55.
    A.D. Grand, S. Bonfig, Selecting a microscope based on imaging depth. Olympus Accessed: 11 Jan 2018
  56. 56.
  57. 57.
    K. Bahlmann et al., Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express 15(17), 10991–10998 (2007)CrossRefGoogle Scholar
  58. 58.
    R. Tomer et al., SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163(7), 1796–1806 (2015)CrossRefGoogle Scholar
  59. 59.
    R. Schmidt et al., Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5(6), 539–544 (2008)CrossRefGoogle Scholar
  60. 60.
    J. Schneider et al., Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12(9), 827–830 (2015)CrossRefGoogle Scholar
  61. 61.
    M.A. Lauterbach, E. Ronzitti, J.R. Sternberg, C. Wyart, V. Emiliani, Fast calcium imaging with optical sectioning via HiLo microscopy. PLoS ONE 10(12), e0143681 (2015)CrossRefGoogle Scholar
  62. 62.
    F. Huang et al., Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10(7), 653–658 (2013)CrossRefGoogle Scholar
  63. 63.
    M. Fernández-Suárez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008)CrossRefGoogle Scholar
  64. 64.
    T.V. Truong, W. Supatto, D.S. Koos, J.M. Choi, S.E. Fraser, Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8(9), 757–760 (2011)CrossRefGoogle Scholar
  65. 65.
    V. Westphal, S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94(14), 143903 (2005)CrossRefGoogle Scholar
  66. 66.
    E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)CrossRefGoogle Scholar
  67. 67.
    M.G. Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102(37), 13081–13086 (2005)CrossRefGoogle Scholar
  68. 68.
    F. Chen, P.W. Tillberg, E.S. Boyden, Expansion microscopy. Science 347(6221), 543–548 (2015)CrossRefGoogle Scholar
  69. 69.
    T. Zimmermann, J. Rietdorf, R. Pepperkok, Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546(1), 87–92 (2003)CrossRefGoogle Scholar
  70. 70.
    L. Wei et al., Super-multiplex vibrational imaging. Nature 544(7651), 465–470 (2017)CrossRefGoogle Scholar
  71. 71.
    W. Supatto, T.V. Truong, D. Débarre, E. Beaurepaire, Advances in multiphoton microscopy for imaging embryos. Curr. Opin. Genet. Dev. 21(5), 538–548 (2011)CrossRefGoogle Scholar
  72. 72.
    K. Wang, N.G. Horton, K. Charan, C. Xu, Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE J. Sel. Top. Quantum Electron. 20(2), 50–60 (2014)CrossRefGoogle Scholar
  73. 73.
    T.F. Holekamp, D. Turaga, T.E. Holy, Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57(5), 661–672 (2008)CrossRefGoogle Scholar
  74. 74.
    A.S. Chiang et al., Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J. Comp. Neurol. 440(1), 1–11 (2001)MathSciNetCrossRefGoogle Scholar
  75. 75.
    E.A. Susaki et al., Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protocols 10(11), 1709–1727 (2015)CrossRefGoogle Scholar
  76. 76.
    K. Chung, K. Deisseroth, CLARITY for mapping the nervous system. Nat. Methods 10(6), 508–513 (2013)CrossRefGoogle Scholar
  77. 77.
    S. Liu et al., Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy. J. Innovative Opt. Health Sci. 10(5), 1743006 (2017)MathSciNetCrossRefGoogle Scholar
  78. 78.
    N. Ji, H. Shroff, H. Zhong, E. Betzig, Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18(6), 605–616 (2008)CrossRefGoogle Scholar
  79. 79.
  80. 80.
  81. 81.
    G. McConnell et al., A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. Elife 5, e18659 (2016)CrossRefGoogle Scholar
  82. 82.
    T. Panier, S.A. Romano, R. Olive, T. Pietri, G. Sumbre, R. Candelier, G. Debrégeas, Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 7, 65 (2013)CrossRefGoogle Scholar
  83. 83.
    N. George, Spinning disk vs. laser-scanning confocal microscopes. Photonics Spectra 38, 69–75 (2004)Google Scholar
  84. 84.
    K.H. Kim et al., Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15(18), 11658–11678 (2007)CrossRefGoogle Scholar
  85. 85.
    L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)CrossRefGoogle Scholar
  86. 86.
    J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, F. Lesage, Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI. Neurophotonics 4(4), 041501 (2017)CrossRefGoogle Scholar
  87. 87.
    E. Osiac et al., Optical coherence tomography as a promising imaging tool for brain investigations. Rom. J. Morphol. Embryol. 55(2), 507–512 (2014)Google Scholar
  88. 88.
    J. Men et al., Optical coherence tomography for brain imaging and developmental biology. IEEE J. Sel. Top. Quantum Electron. 22(4), 120–132 (2016)CrossRefGoogle Scholar
  89. 89.
    B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7), 1047–1058 (2010)CrossRefGoogle Scholar
  90. 90.
    L.W. Swanson, J.W. Lichtman, From Cajal to connectome and beyond. Annu. Rev. Neurosci. 39, 197–216 (2016)CrossRefGoogle Scholar
  91. 91.
    B.N. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing protein location and function. Science 312(5771), 217–224 (2006)CrossRefGoogle Scholar
  92. 92.
    F. Lagugné-Labarthet, Y.R. Shen, in Optical Imaging and Microscopy. ed. by P. Török, F.-J. Kao. Springer Series in Optical Sciences, vol. 87 (Springer, Berlin, Heidelberg, 2007), vol. 2, pp. 237–268Google Scholar
  93. 93.
    M.J. Sanderson, I. Smith, I. Parker, M.D. Bootman, Fluorescence microscopy. Cold Spring Harbor Protoc. 10, 2131 (2014). Scholar
  94. 94.
    J.A. Conchello, J.W. Lichtman, Optical sectioning microscopy. Nat. Methods 2(12), 920 (2005)CrossRefGoogle Scholar
  95. 95.
    M. Symms, H.R. Jäger, K. Schmierer, T.A. Yousry, A review of structural magnetic resonance neuroimaging. J. Neurol. 75(9), 1235–1244 (2004)Google Scholar
  96. 96.
    X. Wang et al., Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotech. 21(7), 803–806 (2003)CrossRefGoogle Scholar
  97. 97.
    X. Tao et al., in Proceedings of SPIE: Neural Imaging and Sensing (SPIE, 2017), vol. 10051, p. 100510RGoogle Scholar
  98. 98.
    M. Minsky, Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)MathSciNetCrossRefGoogle Scholar
  99. 99.
    C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. J. Mod. Optic. 24(10), 1051–1073 (1977)Google Scholar
  100. 100.
    R.H. Webb, Confocal optical microscopy. Rep. Prog. Phys. 59(3), 427 (1996)CrossRefGoogle Scholar
  101. 101.
    C. Cremer, B.R. Masters, Resolution enhancement techniques in microscopy. Eur. Phys. J. H 38(3), 281–344 (2013)CrossRefGoogle Scholar
  102. 102.
    G. Cox, C.J. Sheppard, Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Tech. 63(1), 18–22 (2004)CrossRefGoogle Scholar
  103. 103.
    B.R. Masters, M. Böhnke, Three-dimensional confocal microscopy of the living human eye. Annu. Rev. Biomed. Eng. 4(1), 69–91 (2002)CrossRefGoogle Scholar
  104. 104.
    P.V. Ravichandra, H. Vemisetty, K. Deepthi, S. Jayaprada Reddy, D. Ramkiran, Comparative evaluation of marginal adaptation of BiodentineTM and other commonly used root end filling materials-an invitro study. J. Clin. Diagn. Res.—JDCR 8(3), 243 (2014)Google Scholar
  105. 105.
    N.S. Claxton, T.J. Fellers, N.W. Davidson, Laser scanning confocal microscopy. Department of Optical Microscopy and Digital Imaging, Florida State University, Tallahassee (2006).
  106. 106.
    J. Jonkman, C.M. Brown, Any way you slice it—A comparison of confocal microscopy techniques. J. Biomol. Tech.: JBT 26(2), 54 (2015)Google Scholar
  107. 107.
    M. Petráň, M. Hadravský, M.D. Egger, R. Galambos, Tandem-scanning reflected-light microscope. JOSA 58(5), 661–664 (1968)Google Scholar
  108. 108.
    G. De Luca, R. Breedijk, R. Hoebe, S. Stallinga, E. Manders, Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity. Methods Appl. Fluores. 5(1), 015002 (2017)CrossRefGoogle Scholar
  109. 109.
    G.M. De Luca et al., Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4(11), 2644–2656 (2013)CrossRefGoogle Scholar
  110. 110.
    R. Engelmann, T. Anhut, I. Kleppe, K. Weisshart, Airyscanning: Evoking the full potential of confocal microscopy. Imaging Microsc. 3, 20–21 (2014)Google Scholar
  111. 111.
    J. Huff, The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12(12), 1–2 (2015)CrossRefGoogle Scholar
  112. 112.
    T. Azuma, T. Kei, Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express 23(11), 15003–15011 (2015)CrossRefGoogle Scholar
  113. 113.
    J. Huff, The fast mode for ZEISS LSM 880 with Airyscan: high-speed confocal imaging with super-resolution and improved signal-to-noise ratio. Nat. Methods 13(11), I-II (2016)CrossRefGoogle Scholar
  114. 114.
    M.D. Egger, M. Petran, New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157(3786), 305–307 (1967)CrossRefGoogle Scholar
  115. 115.
    M. Dailey, G. Marrs, J. Satz, M. Waite, Concepts in imaging and microscopy: Exploring biological structure and function with confocal microscopy. Biol. Bull. 197(2), 115–122 (1999)CrossRefGoogle Scholar
  116. 116.
    T. Hosokawa, D.A. Rusakov, T.V. Bliss, A. Fine, Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15(8), 5560–5573 (1995)CrossRefGoogle Scholar
  117. 117.
    A. Villringer et al., Confocal laser microscopy to study microcirculation on the rat brain surface in vivo. Brain Res. 504(1), 159–160 (1989)CrossRefGoogle Scholar
  118. 118.
    P.V. Belichenko, A. Dahlström, Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J. Neurosci. Methods 57(1), 55–61 (1995)CrossRefGoogle Scholar
  119. 119.
    T.R. Brazelton, F.M. Rossi, G.I. Keshet, H.M. Blau, From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497), 1775–1779 (2000)CrossRefGoogle Scholar
  120. 120.
    H.J. Romijn et al., Double immunolabeling of neuropeptides in the human hypothalamus as analyzed by confocal laser scanning fluorescence microscopy. J. Histochem. Cytochem. 47(2), 229–235 (1999)CrossRefGoogle Scholar
  121. 121.
    A. Rodriguez et al., Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods 30(1), 94–105 (2003)CrossRefGoogle Scholar
  122. 122.
    Y. Takahara, N. Matsuki, Y. Ikegaya, Nipkow confocal imaging from deep brain tissues. J. Integr. Neurosci. 10(1), 121–129 (2011)CrossRefGoogle Scholar
  123. 123.
    R.C. Gutierre, D. Vannucci Campos, R.A. Mortara, A.A. Coppi, R.M. Arida, Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method. J. Anat. 230(4), 601–606 (2017)CrossRefGoogle Scholar
  124. 124.
    W. Spalteholz, Uber das Durchsichtigmachen von menschlichen und tierischen Praparaten (S. Hierzel, Leipzig, 1914)Google Scholar
  125. 125.
    A. Azaripour et al., A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog. Histochem. Cytoc. 51(2), 9–23 (2016)CrossRefGoogle Scholar
  126. 126.
    C. Grienberger, A. Konnerth, Imaging calcium in neurons. Neurons 73(5), 862–885 (2002). Scholar
  127. 127.
    A. Ustione, D.W. Piston, A simple introduction to multiphoton microscopy. J. Microsc. 243(3), 221–226 (2011)CrossRefGoogle Scholar
  128. 128.
    S.W. Hell et al., Three-photon excitation in fluorescence microscopy. J. Biomed. Opt. 1(1), 71–74 (1996)MathSciNetCrossRefGoogle Scholar
  129. 129.
    B.A. Wilt et al., Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009)CrossRefGoogle Scholar
  130. 130.
    J. Tønnesen, U.V. Nägerl, Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013)CrossRefGoogle Scholar
  131. 131.
    J.B. Ding, K.T. Takasaki, B.L. Sabatini, Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4), 429–437 (2009)CrossRefGoogle Scholar
  132. 132.
    J. Rietdorf, E.H.K. Stelzer, in Handbook Of Biological Confocal Microscopy, ed. by J.P. Pawley (Springer, Boston, MA, 2006)CrossRefGoogle Scholar
  133. 133.
    M.G. Gustafsson, D.A. Agard, J.W. Sedat, I5 M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195(1), 10–16 (1999)CrossRefGoogle Scholar
  134. 134.
    J. Bewersdorf, R. Schmidt, S.W. Hell, Comparison of I5 M and 4Pi-microscopy. J. Microsc. 222(2), 105–117 (2006)MathSciNetCrossRefGoogle Scholar
  135. 135.
    M.A. Lauterbach, C. Eggeling, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli. Neuromethods, vol. 86 (Humana Press, Totowa, NJ, 2014), pp. 41–71.
  136. 136.
    A. Egner, S.W. Hell, Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15(4), 207–215 (2005)CrossRefGoogle Scholar
  137. 137.
    C.G. Galbraith, J.A. Galbraith, Super-resolution microscopy at a glance. J. Cell Sci. 124(10), 1607–1611 (2011)CrossRefGoogle Scholar
  138. 138.
    C.J.R. Sheppard, Resolution and super-resolution. Microsc. Res. Tech. 80, 590–598 (2017)CrossRefGoogle Scholar
  139. 139.
    L. Möckl, D.C. Lamb, C. Bräuchle, Super-resolved fluorescence microscopy: nobel prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angewandte Chemie Int. Ed. 53(51), 13972–13977 (2014)CrossRefGoogle Scholar
  140. 140.
    The nobel prize in chemistry. Press Release (2014). Accessed 8 Oct 2014
  141. 141.
    G. Keiser, Biophotonics: Concepts to Applications (Springer, Singapore, 2016)CrossRefGoogle Scholar
  142. 142.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)CrossRefGoogle Scholar
  143. 143.
    S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–1355 (2003)CrossRefGoogle Scholar
  144. 144.
    M.G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)CrossRefGoogle Scholar
  145. 145.
    S.T. Hess, T.P. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)CrossRefGoogle Scholar
  146. 146.
    M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)CrossRefGoogle Scholar
  147. 147.
    B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRefGoogle Scholar
  148. 148.
    B. Huang, Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14(1), 10–14 (2010)CrossRefGoogle Scholar
  149. 149.
    M. Heilemann, Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149(4), 243–251 (2010)CrossRefGoogle Scholar
  150. 150.
    B.O. Leung, K.C. Chou, Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65(9), 967–980 (2011)CrossRefGoogle Scholar
  151. 151.
    T.J. Gould, S.T. Hess, Nanoscale biological fluorescence imaging: Breaking the diffraction barrier. Methods Cell Biol. 89, 329–358 (2008)CrossRefGoogle Scholar
  152. 152.
    T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24(14), 954–956 (1999)CrossRefGoogle Scholar
  153. 153.
    G. Donnert et al., Macromolecular-scale resolution in biological fluorescence microscopy. PNAS 103(31), 11440–11445 (2006)CrossRefGoogle Scholar
  154. 154.
    E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144–147 (2009)CrossRefGoogle Scholar
  155. 155.
    M. Dyba, S.W. Hell, Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88(16), 163901 (2002)CrossRefGoogle Scholar
  156. 156.
    M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102(49), 17565–17569 (2005)CrossRefGoogle Scholar
  157. 157.
    S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)CrossRefGoogle Scholar
  158. 158.
    E. D’Este et al., Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016)CrossRefGoogle Scholar
  159. 159.
    M.A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell, Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc. Res. Tech. 70, 269–280 (2007). Scholar
  160. 160.
    S. Bretschneider, C. Eggeling, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98(21), 218103 (2007)CrossRefGoogle Scholar
  161. 161.
    S.W. Hell, M. Kroug, Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B: Lasers Opt. 60(5), 495–497 (1995)CrossRefGoogle Scholar
  162. 162.
    S.W. Hell, M. Dyba, S. Jakobs, Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14(5), 599–609 (2004)CrossRefGoogle Scholar
  163. 163.
    S.W. Hell, Microscopy and its focal switch. Nat. Methods 6(1), 24–32 (2009)MathSciNetCrossRefGoogle Scholar
  164. 164.
    K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell, STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086), 935–939 (2006)CrossRefGoogle Scholar
  165. 165.
    R.J. Kittel et al., Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776), 1051–1054 (2006)CrossRefGoogle Scholar
  166. 166.
    J.J. Sieber, K.I. Willig, R. Heintzmann, S.W. Hell, T. Lang, The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90(8), 2843–2851 (2006)CrossRefGoogle Scholar
  167. 167.
    U.V. Nägerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer, Live-cell imaging of dendritic spines by STED microscopy. PNAS 105(48), 18982–18987 (2008)CrossRefGoogle Scholar
  168. 168.
    S. Fendl, J. Pujol-Martí, J. Ryan, A. Borst, R. Kasper, in Light Microscopy: Methods and Protocols ed. by Y., M.H., H. vol. 1563 (Humana Press, New York, NY, 2017), pp. 143–150Google Scholar
  169. 169.
    S. Berning, K.I. Willig, H. Steffens, P. Dibaj, S.W. Hell, Nanoscopy in a living mouse brain. Science 335(6068), 551 (2012)CrossRefGoogle Scholar
  170. 170.
    V. Westphal et al., Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246–249 (2008)CrossRefGoogle Scholar
  171. 171.
    Y. Hua et al., A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14(7), 833–839 (2011)CrossRefGoogle Scholar
  172. 172.
    N.T. Urban, K.I. Willig, S.W. Hell, U.V. Nägerl, STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101(5), 1277–1284 (2011)CrossRefGoogle Scholar
  173. 173.
    I. Testa et al., Nanoscopy of living brain slices with low light levels. Neuron 75(6), 992–1000 (2012)CrossRefGoogle Scholar
  174. 174.
    S.A. Meyer et al., Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope. J. Biomed. Opt. 21(6), 066017 (2016)CrossRefGoogle Scholar
  175. 175.
    R. Chéreau, G.E. Saraceno, J. Angibaud, D. Cattaert, U.V. Nägerl, Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity. PNAS 114(6), 1401–1406 (2017)CrossRefGoogle Scholar
  176. 176.
    E. D’Este, D. Kamin, F. Balzarotti, S.W. Hell, Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. PNAS 114(2), E191–E199 (2017)CrossRefGoogle Scholar
  177. 177.
    L. Schermelleh et al., Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881), 1332–1336 (2008)CrossRefGoogle Scholar
  178. 178.
    K. Wicker, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli (Humana Press, 2014), pp. 133–165Google Scholar
  179. 179.
    R. Heintzmann, M.G. Gustafsson, Subdiffraction resolution in continuous samples. Nat. Photonics 3(7), 362–364 (2009)CrossRefGoogle Scholar
  180. 180.
    M.G. Gustafsson et al., Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94(12), 4957–4970 (2008)CrossRefGoogle Scholar
  181. 181.
    L. Shao et al., I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J. 94(12), 4971–4983 (2008)CrossRefGoogle Scholar
  182. 182.
    S. Usuki, T. Takada, K.T. Miura, Optical microscopy with improved resolution using two-beam interference of low-coherence light. Measurement 78, 373–380 (2016)CrossRefGoogle Scholar
  183. 183.
    J. Pielage et al., A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 58(2), 195–209 (2008)CrossRefGoogle Scholar
  184. 184.
    R. Heintzmann, T.M. Jovin, C. Cremer, Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). Scholar
  185. 185.
    E.H. Rego et al., Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. PNAS 109(3), E135–E143 (2012)CrossRefGoogle Scholar
  186. 186.
    X. Long, J. Colonell, A.M. Wong, R.H. Singer, T. Lionnet, Quantitative mRNA imaging throughout the entire Drosophila brain. Nat. Methods 14(7), 703–706 (2017)CrossRefGoogle Scholar
  187. 187.
    H. Gong et al., High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nature communications 7, 12142 (2016)CrossRefGoogle Scholar
  188. 188.
    B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, Coherent super-resolution microscopy via laterally structured illumination. Micron 38(2), 150–157 (2007)CrossRefGoogle Scholar
  189. 189.
    S., H., D.K., W., B., S., D.S., R., in Synapse Development. Methods in Molecular Biology ed. by A., P. vol. 1538 (Humana Press, New York, NY, 2017), pp. 155–167Google Scholar
  190. 190.
    M. Schouten et al., Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy. J. Vis. Exp.: JoVE 87, e51276 (2014)Google Scholar
  191. 191.
    T. Klein, S. Proppert, M. Sauer, Eight years of single-molecule localization microscopy. Histochem. Cell Biol. 141(6), 561–575 (2014)CrossRefGoogle Scholar
  192. 192.
    R.E. Thompson, D.R. Larson, W.W. Webb, Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82(5), 2775–2783 (2002)CrossRefGoogle Scholar
  193. 193.
    A. Yildiz, P.R. Selvin, Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38(7), 574–582 (2005)CrossRefGoogle Scholar
  194. 194.
    A. Yildiz et al., Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628), 2061–2065 (2003)CrossRefGoogle Scholar
  195. 195.
    S.K. Saka, in Super-Resolution Microscopy Techniques in the Neurosciences ed. by E.F. Fornasiero, S.O. Rizzoli (Humana Press, 2014), pp. 13–40Google Scholar
  196. 196.
    W.E. Moerner, Microscopy beyond the diffraction limit using actively controlled single molecules. J. Microsc. 246(3), 213–220 (2012)CrossRefGoogle Scholar
  197. 197.
    J. Lippincott-Schwartz, G.H. Patterson, Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19(11), 555–565 (2009)CrossRefGoogle Scholar
  198. 198.
    M. Bates, T.R. Blosser, X. Zhuang, Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94(10), 108101 (2005)CrossRefGoogle Scholar
  199. 199.
    N.C. Verma, C. Rao, C.K. Nandi, Nitrogen-doped biocompatible carbon dot as a fluorescent probe for STORM nanoscopy. J. Phys. Chem. C 122, 8, 4704–4709 (2018)CrossRefGoogle Scholar
  200. 200.
    G. Patterson, M. Davidson, S. Manley, J. Lippincott-Schwartz, Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010)CrossRefGoogle Scholar
  201. 201.
    A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 65(8), 843–856 (2010)CrossRefGoogle Scholar
  202. 202.
    P. Dedecker, C. Flors, J.I. Hotta, H. Uji-i, J. Hofkens, 3D nanoscopy: bringing biological nanostructures into sharp focus. Angew. Chem. Int. Ed. 46(44), 8330–8332 (2007)CrossRefGoogle Scholar
  203. 203.
    M. Bates, B. Huang, X. Zhuang, Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12(5), 505–514 (2008)CrossRefGoogle Scholar
  204. 204.
    A. Egner et al., Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93(9), 3285–3290 (2007)CrossRefGoogle Scholar
  205. 205.
    J. Fölling et al., Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5(11), 943–945 (2008)CrossRefGoogle Scholar
  206. 206.
    A. Sharonov, R.M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 103(50), 18911–18916 (2006)CrossRefGoogle Scholar
  207. 207.
    M. Heilemann et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47(33), 6172–6176 (2008)CrossRefGoogle Scholar
  208. 208.
    S. Schedin-Weiss, I. Caesar, B. Winblad, H. Blom, L.O. Tjernberg, Super-resolution microscopy reveals γ-secretase at both sides of the neuronal synapse. Acta Neuropathol.Commun. 4(1), 29 (2016)CrossRefGoogle Scholar
  209. 209.
    N.A. Frost, H. Shroff, H. Kong, E. Betzig, T.A. Blanpied, Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1), 86–99 (2010)CrossRefGoogle Scholar
  210. 210.
    Y.M. Sigal, C.M. Speer, H.P. Babcock, X. Zhuang, Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163(2), 493–505 (2015)CrossRefGoogle Scholar
  211. 211.
    B. Dudok et al., Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18(1), 75–86 (2015)CrossRefGoogle Scholar
  212. 212.
    J. Zhang, C.M. Carver, F.S. Choveau, M.S. Shapiro, Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons. Neuron 92(2), 461–478 (2016)CrossRefGoogle Scholar
  213. 213.
    H. Zhong, Applying superresolution localization-based microscopy to neurons. Synapse 69(5), 283–294 (2015)CrossRefGoogle Scholar
  214. 214.
    K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)CrossRefGoogle Scholar
  215. 215.
    T. Yoshimura, S.R. Stevens, C. Leterrier, M.C. Stankewich, M.N. Rasband, Developmental changes in expression of βIV spectrin splice variants at axon initial segments and nodes of ranvier. Front. Cell. Neurosci. 10, 304 (2017)CrossRefGoogle Scholar
  216. 216.
    K. Xu, H.P. Babcock, X. Zhuang, Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9(2), 185–188 (2012)CrossRefGoogle Scholar
  217. 217.
    K.F. Tehrani, J. Xu, Y. Zhang, P. Shen, P. Kner, Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt. Express 23(10), 13677–13692 (2015)CrossRefGoogle Scholar
  218. 218.
    M. Lakadamyali, H. Babcock, M. Bates, X. Zhuang, J. Lichtman, 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7(1), e30826 (2012)CrossRefGoogle Scholar
  219. 219.
    J. Vangindertael et al., Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Sci. Rep. 5, 13532 (2015)Google Scholar
  220. 220.
    L. Barna et al., Correlated confocal and super-resolution imaging by VividSTORM. Nat. Protoc. 11(1), 163–183 (2016)CrossRefGoogle Scholar
  221. 221.
    T.P. Li, T.A. Blanpied, Control of Transmembrane Protein Diffusion within the Postsynaptic Density Assessed by Simultaneous Single-Molecule Tracking and Localization Microscopy. Front. Synaptic Neurosci. 8, 19 (2016)CrossRefGoogle Scholar
  222. 222.
    C.C. Lo, A.S. Chiang, Toward Whole-Body Connectomics. J. Neurosci. 36(45), 11375–11383 (2016)CrossRefGoogle Scholar
  223. 223.
    L.L. Looger, O. Griesbeck, Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22(1), 18–23 (2012)CrossRefGoogle Scholar
  224. 224.
    F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)CrossRefGoogle Scholar
  225. 225.
    R.K. Benninger, D.W. Piston, Two‐photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Bio. 4–11 (2013)Google Scholar
  226. 226.
    H.C. Ishikawa-Ankerhold, R. Ankerhold, G.P. Drummen, Advanced fluorescence microscopy techniques—Frap, flip, flap. Fret FLIM. Mol. 17(4), 4047–4132 (2012)CrossRefGoogle Scholar
  227. 227.
    T.S. Tkaczyk, Field Guide to Microscopy (SPIE, Bellingham, 2010)CrossRefGoogle Scholar
  228. 228.
    T.C. Peter, Two-photon fluorescence light microscopy. Encyclopedia of Life Sciences (2002).
  229. 229.
    F. Helmchen, W. Denk, New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12(5), 593–601 (2002)CrossRefGoogle Scholar
  230. 230.
    A. Diaspro et al., Multi-photon excitation microscopy. Biomed. Eng. Online 5(1), 36 (2006)CrossRefGoogle Scholar
  231. 231.
    W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)CrossRefGoogle Scholar
  232. 232.
    Y. Mizuta, D. Kurihara, T. Higashiyama, Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252(5), 1231–1240 (2015)CrossRefGoogle Scholar
  233. 233.
    M. Rubart, Two-photon microscopy of cells and tissue. Circ. Res. 95(12), 1154–1166 (2004)CrossRefGoogle Scholar
  234. 234.
    M.J. Miller, S.H. Wei, I. Parker, M.D. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 1869–1873 (2002)CrossRefGoogle Scholar
  235. 235.
    P. Bousso, E.A. Robey, Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21(3), 349–355 (2004)CrossRefGoogle Scholar
  236. 236.
    D.W. Piston, in Fluorescence Microscopy: From Principles to Biological Applications, ed. by U. Kubitscheck (Wiley, 2017), pp. 203–242CrossRefGoogle Scholar
  237. 237.
    S. Zhuo et al., Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomed. Opt. Express 2(3), 615–619 (2011)CrossRefGoogle Scholar
  238. 238.
    R.M. Williams, W.R. Zipfel, W.W. Webb, Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5(5), 603–608 (2001)CrossRefGoogle Scholar
  239. 239.
    A.A. Mascaro et al., Multiphoton microscopy in brain imaging, in SPIE BiOS, vol. 932903 (2015)Google Scholar
  240. 240.
    R. Yuste, W. Denk, Dendritic spines as basic functional units of neuronal integration. Nature 375(6533), 682 (1995)CrossRefGoogle Scholar
  241. 241.
    W. Denk, M. Sugimori, R. Llinas, Two types of calcium response limited to single spines in cerebellar Purkinje cells. PNAS 92(18), 8279–8282 (1995)CrossRefGoogle Scholar
  242. 242.
    J.T. Trachtenberg, B.E. Chen, G.W. Knott, G. Feng, Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917), 788 (2002)CrossRefGoogle Scholar
  243. 243.
    G.W. Knott, A. Holtmaat, L. Wilbrecht, E. Welker, K. Svoboda, Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9(9), 1117 (2006)CrossRefGoogle Scholar
  244. 244.
    C.R. Rose, Y. Kovalchuk, J. Eilers, A. Konnerth, Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflügers Archiv Eur. J. Physiol. 439(1), 201–207 (1999)CrossRefGoogle Scholar
  245. 245.
    C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, In vivo two-photon calcium imaging of neuronal networks. PNAS 100(12), 7319–7324 (2003)CrossRefGoogle Scholar
  246. 246.
    C.J. Engelbrecht, R.S. Johnston, E.J. Seibel, F. Helmchen, Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express 16(8), 5556–5564 (2008)CrossRefGoogle Scholar
  247. 247.
    F. Helmchen, M.S. Fee, D.W. Tank, W. Denk, A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31(6), 903–912 (2001)CrossRefGoogle Scholar
  248. 248.
    W. Zong et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14(7), 713–719 (2017)CrossRefGoogle Scholar
  249. 249.
    J.H. Park, W. Sun, M. Cui, High-resolution in vivo imaging of mouse brain through the intact skull. PNAS 112(30), 9236–9241 (2015)CrossRefGoogle Scholar
  250. 250.
    X. Sun et al., Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface. J. Biol. Chem. 281(25), 17420–17431 (2006)CrossRefGoogle Scholar
  251. 251.
    S. Bovetti, C. Moretti, T. Fellin, Mapping brain circuit function in vivo using two-photon fluorescence microscopy. Micros. Res. Techn. 77(7), 492–501 (2014)CrossRefGoogle Scholar
  252. 252.
    M. Matsuzaki, M. Kondo, K. Kobayashi, M. Ohkura, J. Nakai, Two-photon calcium imaging of medial prefrontal cortex and hippocampus without cortical invasion (2017).
  253. 253.
    R. Kawakami et al., Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser. Sci. Rep. 3, srep01014 (2013)Google Scholar
  254. 254.
    P. Theer, M.T. Hasan, W. Denk, Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti: Al2O3 regenerative amplifier. Opt. Lett. 28(12), 1022–1024 (2003)CrossRefGoogle Scholar
  255. 255.
    D. Kobat, N.G. Horton, C. Xu, In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10), 106014 (2011)CrossRefGoogle Scholar
  256. 256.
    A. Birkner, C.H. Tischbirek, A. Konnerth, Improved deep two-photon calcium imaging in vivo. Cell Calcium 64, 29–35 (2017)CrossRefGoogle Scholar
  257. 257.
    J.M. Girkin, S. Poland, A.J. Wright, Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20(1), 106–110 (2009)CrossRefGoogle Scholar
  258. 258.
    L. Sherman, J.Y. Ye, O. Albert, T.B. Norris, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206(1), 65–71 (2002)MathSciNetCrossRefGoogle Scholar
  259. 259.
    M.A. Neil et al., Adaptive aberration correction in a two-photon microscope. J. Microsc. 200(2), 105–108 (2000)CrossRefGoogle Scholar
  260. 260.
    J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer, In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy. J. Neurophysiol. 92(5), 3121–3133 (2004)CrossRefGoogle Scholar
  261. 261.
    M.J. Levene, D.A. Dombeck, K.A. Kasischke, R.P. Molloy, W.W. Webb, In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91(4), 1908–1912 (2004)CrossRefGoogle Scholar
  262. 262.
    M.E. Bocarsly et al., Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6(11), 4546–4556 (2015)CrossRefGoogle Scholar
  263. 263.
    R.P. Barretto, B. Messerschmidt, M.J. Schnitzer, In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6(7), 511–512 (2009)CrossRefGoogle Scholar
  264. 264.
    M. Sato et al., Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain. Biomed. Opt. Express 8(9), 4049–4060 (2017)CrossRefGoogle Scholar
  265. 265.
    D.G. Ouzounov et al., In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14(4), 388–390 (2017)MathSciNetCrossRefGoogle Scholar
  266. 266.
    D.L. Wokosin, V.E. Centonze, S. Crittenden, J. White, Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4(3), 208–214 (1996)CrossRefGoogle Scholar
  267. 267.
    C. Xu, W. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. PNAS 93(20), 10763–10768 (1996)CrossRefGoogle Scholar
  268. 268.
    N.G. Horton et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7(3), 205–209 (2013)CrossRefGoogle Scholar
  269. 269.
    J. Skoch, G.A. Hickey, S.T. Kajdasz, B.T. Hyman, B.J. Bacskai, In vivo imaging of amyloid-ß deposits in mouse brain with multiphoton microscopy, in Amyloid Proteins. Methods in Molecular Biology™ ed. by E.M. Sigurdsson. vol. 299 (Humana Press, 2005).
  270. 270.
    J. Dong, R. Revilla-Sanchez, S. Moss, P.G. Haydon, Multiphoton in vivo imaging of amyloid in animal models of Alzheimer’s disease. Neuropharmacology 59(4), 268–275 (2010)CrossRefGoogle Scholar
  271. 271.
    D. Vučinić, T.J. Sejnowski, A compact multiphoton 3D imaging system for recording fast neuronal activity. PLoS ONE 2(8), e699 (2007)CrossRefGoogle Scholar
  272. 272.
    G.D. Reddy, K. Kelleher, R. Fink, P. Saggau, Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11(6), 713–720 (2008)CrossRefGoogle Scholar
  273. 273.
    N. Callamaras, I. Parker, Construction of a confocal microscope for real-time xy and xz imaging. Cell Calcium 26(6), 271–279 (1999)CrossRefGoogle Scholar
  274. 274.
    W. Göbel, B.M. Kampa, F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat. Methods 4(1), 73 (2007)CrossRefGoogle Scholar
  275. 275.
    R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, M. Sauer, Application of multiline two-photon microscopy to functional in vivo imaging. J. Neurosci. Methods 151(2), 276–286 (2006)CrossRefGoogle Scholar
  276. 276.
    M.L. Castanares, V. Gautam, J. Drury, H. Bachor, V.R. Daria, Efficient multi-site two-photon functional imaging of neuronal circuits. Biomed. Opt. Exp. 7(12), 5325–5334 (2016)CrossRefGoogle Scholar
  277. 277.
    M. Dal Maschio, A.M. De Stasi, F. Benfenati, T. Fellin, Three-dimensional in vivo scanning microscopy with inertia-free focus control. Opt. Lett. 36(17), 3503–3505 (2011)CrossRefGoogle Scholar
  278. 278.
    E.E. Hoover, J.A. Squier, Advances in multiphoton microscopy technology. Nat. Photonics 7(2), 93–101 (2013)CrossRefGoogle Scholar
  279. 279.
    N. Ji, J. Freeman, S.L. Smith, Technologies for imaging neural activity in large volumes. Nat. Neurosci. 19(9), 1154–1164 (2016)CrossRefGoogle Scholar
  280. 280.
    O. Garaschuk et al., Optical monitoring of brain function in vivo: from neurons to networks. Pflügers Archiv 453(3), 385–396 (2006)CrossRefGoogle Scholar
  281. 281.
    W. Göbel, F. Helmchen, In vivo calcium imaging of neural network function. Physiology 22(6), 358–365 (2007)CrossRefGoogle Scholar
  282. 282.
    W. Yang, R. Yuste, In vivo imaging of neural activity. Nat. Methods 14(4), 349–359 (2017)CrossRefGoogle Scholar
  283. 283.
    R. David, Milestone 16: Light sheet microscopy: Seeing the light, perpendicularly. Nature (1993).
  284. 284.
    F. Pampaloni, B.J. Chang, E.H. Stelzer, Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res. 360(1), 129–141 (2015)CrossRefGoogle Scholar
  285. 285.
    J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E.H. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)CrossRefGoogle Scholar
  286. 286.
    M.W. Adams, A.F. Loftus, S.E. Dunn, M.S. Joens, J.A. Fitzpatrick, Light sheet fluorescence microscopy (LSFM). Curr. Protoc. Cytom. 71, 12–37 (2015)Google Scholar
  287. 287.
    H. Siedentopf, R. Zsigmondy, Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser. Ann. Phys. 315(1), 1–39 (1902)CrossRefGoogle Scholar
  288. 288.
    H.G. Söderbaum, Award ceremony speech. (1926).
  289. 289.
    A.H. Voie, D.H. Burns, F.A. Spelman, Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170(3), 229–236 (1993)CrossRefGoogle Scholar
  290. 290.
    S. Lindek, R. Pick, E.H. Stelzer, Confocal theta microscope with three objective lenses. Rev. Sci. Instrum. 65(11), 3367–3372 (1994)CrossRefGoogle Scholar
  291. 291.
    P.A. Santi, S.B. Johnson, M. Hillenbrand, P.Z. GrandPre, T.J. Glass, J.R. Leger, Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques 46(4), 287 (2009)CrossRefGoogle Scholar
  292. 292.
    C.J. Engelbrecht, E.H. Stelzer, Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31(10), 1477–1479 (2006)CrossRefGoogle Scholar
  293. 293.
    P. Hoyer et al., Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. PNAS 113(13), 3442–3446 (2016)CrossRefGoogle Scholar
  294. 294.
    R.M. Power, J. Huisken, A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14(4), 360–373 (2017)CrossRefGoogle Scholar
  295. 295.
    T.A. Planchon et al., Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8(5), 417–423 (2011)CrossRefGoogle Scholar
  296. 296.
    M. Zhao et al., Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy. Biomed. Opt. Express 5(5), 1296–1308 (2014)CrossRefGoogle Scholar
  297. 297.
    F.C. Zanacchi et al., Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8(12), 1047–1049 (2011)CrossRefGoogle Scholar
  298. 298.
    F.C. Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, A. Diaspro, Light-sheet confined super-resolution using two-photon photoactivation. PLoS ONE 8(7), e67667 (2013)CrossRefGoogle Scholar
  299. 299.
    Y.S. Hu et al., Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Optical nanoscopy 2(1), 7 (2013)CrossRefGoogle Scholar
  300. 300.
    A. Narasimhan, K.U. Venkataraju, J. Mizrachi, D.F. Albeanu, P. Osten, A high resolution whole brain imaging using Oblique Light Sheet Tomography (2017).
  301. 301.
    P.J. Keller, M.B. Ahrens, J. Freeman, Light-sheet imaging for systems neuroscience. Nat. Methods 12(1), 27–29 (2015)CrossRefGoogle Scholar
  302. 302.
    L.A. Royer et al., Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotech. 34(12), 1267–1278 (2016)CrossRefGoogle Scholar
  303. 303.
    R.K. Chhetri, F. Amat, Y. Wan, B.I.L. Höckendorf, W.C. Lemon, P.J. Keller, Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12(12), 1171–1178 (2015)CrossRefGoogle Scholar
  304. 304.
    H.U. Dodt et al., Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4(4), 331–336 (2007)CrossRefGoogle Scholar
  305. 305.
    M. Stefaniuk et al., Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene. Sci. Rep. 6, 28209 (2016)CrossRefGoogle Scholar
  306. 306.
    S. Wolf et al., Whole-brain functional imaging with two-photon light-sheet microscopy. Nat. Methods 12(5), 379–380 (2015)CrossRefGoogle Scholar
  307. 307.
    L. Silvestri et al., Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis. Front. Neuroanat. 9, 68 (2015)CrossRefGoogle Scholar
  308. 308.
    W. Li et al., in Optics and the Brain (Optical Society of America, 2016), pp. BTu4D-3Google Scholar
  309. 309.
    S.W. Emmons, The beginning of connectomics: a commentary on White et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis elegans’. Phil. Trans. R. Soc. B 370(1666), 20140309 (2015)Google Scholar
  310. 310.
    F. Jabr, The connectome debate: is mapping the mind of a worm worth it. Sci. Am. (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biophotonics, National Yang-Ming UniversityTaipei 112Taiwan
  2. 2.Department of PhysicsJagannath Barooah CollegeJorhatIndia
  3. 3.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA
  4. 4.Department of Life ScienceBrain Research Center, Institute of Biotechnology, National Tsing Hua UniversityHsinchuTaiwan
  5. 5.Genomics Research Center, Academia SinicaNankang, TaipeiTaiwan
  6. 6.Institute of Physics, Academia SinicaNankang, TaipeiTaiwan
  7. 7.Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiungTaiwan
  8. 8.Kavli Institute for Brain and Mind, University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations