Super-Resolution STED and STORM/PALM Microscopy for Brain Imaging

  • Boris Egger
  • Simon G. Sprecher
Part of the Progress in Optical Science and Photonics book series (POSP, volume 5)


Cellular processes in the brain allow for most complex computations, which in turn provide the basis of any form of behaviour. With the advent of diffraction-unlimited imaging techniques, it is now possible to study processes in neurons with unprecedented subcellular resolution. Based on the illumination and recording techniques, two approaches are dominating super-resolution microscopy: stimulated emission depletion (STED) microscopy, which is based on image scanning, and stochastic optical reconstruction microscopy (STORM)/photoactivated localization microscopy (PALM), which makes use of single-molecule localization. In the last decade, both approaches led to spectacular insight into the nanostructure of various neuronal compartments. We highlight a selection of studies, in which neuronal structures and processes were imaged with super-resolution, including the cytoskeleton of axons, plasticity in dendritic spines as well as molecular arrangements in presynaptic terminals and active zones.


STORM STED Microscopy Brain Neurons 



We thank Elisa D’Este, Stefan Hell, Valentin Nägerl, Stephan Sigrist and Xiaowei Zhuang for permission to reproduce their published work. SGS is funded by the European Research Council (ERC-2012-StG 309832-PhotoNaviNet) and the Swiss National Science Foundation (31003A_169993).


  1. 1.
    J. Bar, O. Kobler, B. van Bommel, M. Mikhaylova, Periodic F-actin structures shape the neck of dendritic spines. Sci. Rep. 6, 37136 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Bates, B. Huang, G.T. Dempsey, X. Zhuang, Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007)CrossRefGoogle Scholar
  3. 3.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)CrossRefGoogle Scholar
  4. 4.
    A.N. Butkevich, G.Y. Mitronova, S.C. Sidenstein, J.L. Klocke, D. Kamin, D.N. Meineke, E. D’Este, P.T. Kraemer, J.G. Danzl, V.N. Belov, S.W. Hell, Fluorescent Rhodamines and fluorogenic Carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. Engl. 55, 3290–3294 (2016)CrossRefGoogle Scholar
  5. 5.
    N.R. Conley, J.S. Biteen, W.E. Moerner, Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. J. Phys. Chem. B 112, 11878–11880 (2008)CrossRefGoogle Scholar
  6. 6.
    E. D’Este, D. Kamin, F. Balzarotti, S.W. Hell, Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc. Natl. Acad. Sci. U. S. A. 114, E191–E199 (2017)CrossRefGoogle Scholar
  7. 7.
    E. D’Este, D. Kamin, F. Gottfert, A. El-Hady, S.W. Hell, STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015)CrossRefGoogle Scholar
  8. 8.
    E. D’Este, D. Kamin, C. Velte, F. Gottfert, M. Simons, S.W. Hell, Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Dani, B. Huang, J. Bergan, C. Dulac, X. Zhuang, Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010)CrossRefGoogle Scholar
  10. 10.
    G.T. Dempsey, J.C. Vaughan, K.H. Chen, M. Bates, X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011)CrossRefGoogle Scholar
  11. 11.
    N. Ehmann, S. van de Linde, A. Alon, D. Ljaschenko, X.Z. Keung, T. Holm, A. Rings, A. DiAntonio, S. Hallermann, U. Ashery, M. Heckmann, M. Sauer, R.J. Kittel, Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014)CrossRefGoogle Scholar
  12. 12.
    U. Endesfelder, M. Heilemann, Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol. Biol. 1251, 263–276 (2015)CrossRefGoogle Scholar
  13. 13.
    E.F. Fornasiero, F. Opazo, Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. BioEssays 37, 436–451 (2015)CrossRefGoogle Scholar
  14. 14.
    C.G. Galbraith, J.A. Galbraith, Super-resolution microscopy at a glance. J. Cell Sci. 124, 1607–1611 (2011)CrossRefGoogle Scholar
  15. 15.
    M.G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000)CrossRefGoogle Scholar
  16. 16.
    M.G. Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A. 102, 13081–13086 (2005)CrossRefGoogle Scholar
  17. 17.
    B. Han, R. Zhou, C. Xia, X. Zhuang, Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons. Proc. Natl. Acad. Sci. U. S. A. 114, E6678–E6685 (2017)CrossRefGoogle Scholar
  18. 18.
    J. He, R. Zhou, Z. Wu, M.A. Carrasco, P.T. Kurshan, J.E. Farley, D.J. Simon, G. Wang, B. Han, J. Hao, E. Heller, M.R. Freeman, K. Shen, T. Maniatis, M. Tessier-Lavigne, X. Zhuang, Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Natl. Acad. Sci. U. S. A. 113, 6029–6034 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Heintzmann, T.M. Jovin, C. Cremer, Saturated patterned excitation microscopy–a concept for optical resolution improvement. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 19, 1599–1609 (2002)CrossRefGoogle Scholar
  20. 20.
    S.W. Hell, M. Dyba, S. Jakobs, Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14, 599–609 (2004)CrossRefGoogle Scholar
  21. 21.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRefGoogle Scholar
  22. 22.
    S.T. Hess, T.P. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Hotulainen, C.C. Hoogenraad, Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010)CrossRefGoogle Scholar
  24. 24.
    B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)CrossRefGoogle Scholar
  26. 26.
    J.T. Kevenaar, C.C. Hoogenraad, The axonal cytoskeleton: from organization to function. Front. Mol. Neurosci. 8, 44 (2015)CrossRefGoogle Scholar
  27. 27.
    T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999)CrossRefGoogle Scholar
  28. 28.
    A. Konietzny, J. Bar, M. Mikhaylova, Dendritic Actin cytoskeleton: structure, functions, and regulations. Front Cell Neurosci. 11, 147 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Lehmann, G. Lichtner, H. Klenz, J. Schmoranzer, Novel organic dyes for multicolor localization-based super-resolution microscopy. J. Biophotonics 9, 161–170 (2016)CrossRefGoogle Scholar
  30. 30.
    K.S. Liu, M. Siebert, S. Mertel, E. Knoche, S. Wegener, C. Wichmann, T. Matkovic, K. Muhammad, H. Depner, C. Mettke, J. Buckers, S.W. Hell, M. Muller, G.W. Davis, D. Schmitz, S.J. Sigrist, RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011)CrossRefGoogle Scholar
  31. 31.
    G. Lukinavicius, L. Reymond, E. D’Este, A. Masharina, F. Gottfert, H. Ta, A. Guther, M. Fournier, S. Rizzo, H. Waldmann, C. Blaukopf, C. Sommer, D.W. Gerlich, H.D. Arndt, S.W. Hell, K. Johnsson, Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Machnicka, R. Grochowalska, D.M. Boguslawska, A.F. Sikorski, M.C. Lecomte, Spectrin-based skeleton as an actor in cell signaling. Cell. Mol. Life Sci. 69, 191–201 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Maglione, S.J. Sigrist, Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16, 790–797 (2013)CrossRefGoogle Scholar
  34. 34.
    U.V. Nagerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer, Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U. S. A. 105, 18982–18987 (2008)CrossRefGoogle Scholar
  35. 35.
    M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Schneider, J. Zahn, M. Maglione, S.J. Sigrist, J. Marquard, J. Chojnacki, H.G. Krausslich, S.J. Sahl, J. Engelhardt, S.W. Hell, Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12, 827–830 (2015)CrossRefGoogle Scholar
  37. 37.
    S.C. Sidenstein, E. D’Este, M.J. Bohm, J.G. Danzl, V.N. Belov, S.W. Hell, Multicolour multilevel STED nanoscopy of Actin/spectrin organization at synapses. Sci. Rep. 6, 26725 (2016)CrossRefGoogle Scholar
  38. 38.
    I.A. Spuhler, G.M. Conley, F. Scheffold, S.G. Sprecher, Super resolution imaging of genetically labeled synapses in Drosophila brain tissue. Front Cell Neurosci. 10, 142 (2016)CrossRefGoogle Scholar
  39. 39.
    A.H. Tang, H. Chen, T.P. Li, S.R. Metzbower, H.D. MacGillavry, T.A. Blanpied, A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Tonnesen, G. Katona, B. Rozsa, U.V. Nagerl, Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014)CrossRefGoogle Scholar
  41. 41.
    J. Tonnesen, U.V. Nagerl, Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Van Noorden, Insider view of cells scoops Nobel. Nature 514, 286 (2014)CrossRefGoogle Scholar
  43. 43.
    E. Wegel, A. Gohler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, I.M. Dobbie, Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci. Rep. 6, 27290 (2016)CrossRefGoogle Scholar
  44. 44.
    D. Wildanger, R. Medda, L. Kastrup, S.W. Hell, A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013)CrossRefGoogle Scholar
  46. 46.
    C. Zhang, M.N. Rasband, Cytoskeletal control of axon domain assembly and function. Curr. Opin. Neurobiol. 39, 116–121 (2016)CrossRefGoogle Scholar
  47. 47.
    G. Zhong, J. He, R. Zhou, D. Lorenzo, H.P. Babcock, V. Bennett, X. Zhuang. Developmental mechanism of the periodic membrane skeleton in axons. Elife 3 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations