Skip to main content

Interlaminar Fracture Properties of Bamboo

  • Chapter
  • First Online:
The Fracture Mechanics of Plant Materials
  • 1005 Accesses

Abstract

In this chapter, Mode I, II, III interlaminar fracture properties of bamboo and the fracture mechanism are studied by double cantilever beam (DCB) method, end-notched flexure beam (ENF) method, modified split cantilever beam (MSCB), and split cantilever beam (SCB) method respectively. The results show that: (1) the Mode I, Mode II, and Mode III interlaminar fracture toughness (GIC, GIIC, and GIIIC) of bamboo are the basic attributes of bamboo that represent the capacity of bamboo to resist the propagation of cracks; (2) On the Mode I fracture surfaces of bamboo, smooth fibers, and plane ground tissue are found, which indicate that the longitudinal interface strength was weak among bamboo cells. The Mode II fracture surfaces is rougher, and ground tissue is characterized by hackle shearing deformation, which indicates that a large amount of fracture energy would be absorbed by the shear deformation of ground tissue, and GIIC ≈ 2.5 GIC; From the Mode III fracture surface of bamboo, it can be seen that the resistance that hindered the propagation of interlaminar crack is contributed by the transverse shear strength of ground tissue cell wall and interface strength, and GIIIC ≈ 4.0 GIC; (3) The study on the toughness contribution of bamboo node to the interlaminar fracture toughness of bamboo and the mechanism show that \(G_{\text{IC}}^{\text{Node}}\) ≈ 2.9 \(G_{\text{IC}}^{\text{Internode}}\), \(G_{\text{IIC}}^{\text{Node}}\) ≈ 1.3 \(G_{\text{IIC}}^{\text{Internode}}\), and \(G_{\text{IIIC}}^{\text{Node}}\) ≈ 2.7 \(G_{\text{IIIC}}^{\text{Internode}}\), thus bamboo node can contribute a lot to hinder the interlaminar fracture of bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng QY, Li SH, Bao XR (1992) Effect of bamboo nodal on mechanical properties of bamboo wood. Sci Silvae Sin 28(3):247–252 (in Chinese)

    Google Scholar 

  2. Ahmad M, Kamke FA (2005) Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties. Wood Sci Technol 39(6):448–459

    Article  Google Scholar 

  3. Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci Technol 41:385–400

    Article  Google Scholar 

  4. Hodgkinson JM (2000) Mechanical testing of advanced fibre composites. Woodhead Publishing and CRC Press, Cambridge

    Google Scholar 

  5. Triboulot P, Jodin P, Pluvinage G (1984) Validity of fracture mechanics concept applied to wood by finite element calculation. Wood Sci Technol 18(6):448–459

    Google Scholar 

  6. American Society of Testing Materials (ASTM) (2001) Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Annual book of ASTM standards. Philadelphia, PA, D 5528-01

    Google Scholar 

  7. Yoshihara H, Ohta M (2000) Measurement of Mode II fracture toughness of wood by the end-notched flexure test. J Wood Sci 46:273–278

    Article  Google Scholar 

  8. Reiterer A, Tschegg S (2002) The influence of moisture content on the mode I fracture behaviour of sprucewood. J Mater Sci 37:4487–4491

    Article  Google Scholar 

  9. Ma LF, Ma NX (1997) Study on variation in bamboo wood properties of Phyllostachys heterocycla var. pubescens. Sci Silvae Sin 33(4):357–364 (in Chinese)

    MathSciNet  Google Scholar 

  10. Yu ZC, Jiao GQ (1996) The size effects of crack in DCB test of composite materials. J Aeronaut Mater 16(4):46–53 (in Chinese)

    Google Scholar 

  11. National Technical Monitoring Bureau (1995) National standard GB/T 15780–1995: testing methods for physical and mechanical properties of wood. China Standard Press, Beijing

    Google Scholar 

  12. Cook J, Gordon JE, Evans CC, Marsh DM (1964) A mechanism for the control of crack propagation in all-brittle systems. Proc R Soc 282A:508–520

    Article  Google Scholar 

  13. Barette JD, Foschi RO (1977) Mode stress intensity factors for cracked wood. Eng Fract Mech 9:371–378

    Article  Google Scholar 

  14. Russell AJ, Street KN (1985) Moisture and temperature effects on the mixed-mode delamination fracture of materials. ASTM STP876, p 349

    Google Scholar 

  15. Carsson LA, Gillespie JW, Pipes RP (1986) On the analysis and design of the end notched flexure (ENF) specimen for mode testing. J Compos Mater 6:20

    Google Scholar 

  16. Hossein Sadpour, Mehdi Barikani, Mutlu Sezen (2003) Mode-II interlaminar fracture toughness of carbon/epoxy laminates. Iran Polym J 12(5):389–400

    Google Scholar 

  17. Brunner AJ, Blackman BRK, Davies P (2008) A status report on delamination resistance testing of polymer-matrix composites. Eng Fract Mech 75(9):2779–2794

    Article  Google Scholar 

  18. Sham Prasad MS, Venkatesha CS, Jayaraju T (2011) Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions. J Miner Mater Charact Eng 10(13):1263–1275

    Google Scholar 

  19. Li Q, Hu S, Zhu S (1998) Fracture mechanics and its engineering application. Published by Harbin Engineering University pp 103–104

    Google Scholar 

  20. Davies P (ed) (1993) Protocols for interlaminar fracture testing of composites. ESIS Polymers & Composites Task, Group

    Google Scholar 

  21. Davies P, Blackman BRK, Brunner AJ (2001) Mode II delamination. In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers adhesives and composites, ESIS publication 28. Elsevier, Amsterdam, pp 307–334

    Chapter  Google Scholar 

  22. Aeronautical Department Standard (2002) Test method of interlaminar fracture toughness of carbon fiber composite laminates in hot-wet environments. Part II: test method of Mode II interlaminar fracture toughness. HB 7718-2 (in Chinese)

    Google Scholar 

  23. Fonselius M, Riipola R (1992) Determination of fracture toughness for wood. J Struct Eng 118(7):1727–1740

    Article  Google Scholar 

  24. Demorais AB, Silva JF, Marques AT et al (2002) Mode II interlaminar fracture of filament wound angle-ply specimens. Appl Compos Mater 9:117–129

    Article  Google Scholar 

  25. Kuboki T, Jar P-YB, Cheng JJR (2004) Interlaminar fracture toughness and the associated fracture behavior for glass fiber reinforced polymers (GFRP). J Mater Sci 39:1419–1423

    Article  Google Scholar 

  26. Hiroshi Y (2005) Mode II initiation fracture toughness analysis for wood obtained by 3-ENF test. Compos Sci Technol 65:2198–2207

    Article  Google Scholar 

  27. Silva MAL, de Moura MFSF, Morais JJL (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos Part A 37:1334–1344

    Article  Google Scholar 

  28. Yao W, Zhong W, Lim CW (2009) Symplectic elasticity. Published by World Scientific Publishing Co. Pte. Ltd., pp 63–94

    Google Scholar 

  29. Fan C, Ben Jar P-Y, Roger Cheng J-J (2006) Revisit the analysis of end-notched flexure (ENF) specimen. Compos Sci Technol 66:1497–1498

    Article  Google Scholar 

  30. Zhicheng Y (1997) Study on Mode II interlaminar fracture test method of composites. J Aeronaut Mater 17(4):54–61

    Google Scholar 

  31. Xu MQ, Lu ZY (2003) Determination of Loblolly’s shear modulus. Mech Eng 25:57–60

    Google Scholar 

  32. Davies P, Kausch HH, Williams JG (1992) Round robin interlaminar fracture testing of carbon fiber reinforced epoxy and PEEK composites. Compos Sci Technol 43:129–136

    Article  Google Scholar 

  33. Davidson BD, Teller SS (2010) Recommendations for an ASTM standardized test for determining GIIC of unidirectional laminated polymeric matrix composites. J ASTM Int 7(2):1–11

    Google Scholar 

  34. Becht G, Gillespie JW (1988) Design and analysis of the crack rail shear specimen for Mode III interlaminar fracture. Compos Sci Technol 31:143–157

    Article  Google Scholar 

  35. Donaldson SL (1988) Mode III interlaminar fracture characterization of composite material. Compos Sci Technol 32:225–249

    Article  Google Scholar 

  36. Mehrabadi FA, Khoshravan M (2013) Mode III interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates. J Compos Mater 47(13):1583–1592

    Article  Google Scholar 

  37. Rizov V, Shindo Y, Horiguchi K et al (2006) Mode III interlaminar fracture behavior of glass fiber reinforced polymer woven laminates at 293 to 4 K. Appl Compos Mater 13:287–304

    Article  Google Scholar 

  38. Szekrényes A (2009) Improved analysis of the modified split-cantilever beam for mode-III fracture. Int J Mech Sci 51:682–693

    Article  Google Scholar 

  39. Khoshravan MR, Moslemi M (2014) Investigation on Mode III interlaminar fracture of glass/epoxy laminates using a modified split cantilever beam test. Eng Fract Mech 127:267–279

    Article  Google Scholar 

  40. Davidson BD, Sediles FO (2011) Mixed-mode I-II-III delamination toughness determination via a shear-torsion-bending test. Compos Part A: Appl S 42:589–603

    Article  Google Scholar 

  41. Johnston AL, Davidson BD, Simon KK (2014) Assessment of split-beam-type tests for mode III delamination toughness determination. Int J Fract 185:31–48

    Article  Google Scholar 

  42. Anderson TL (2005) Fracture mechanics—fundamentals and applications, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, London

    MATH  Google Scholar 

  43. Szekrényes A (2010) Fracture analysis in the modified split-cantilever beam using the classical theories of strength of materials. JPCS 240:012030

    Google Scholar 

  44. Szekrényes A (2010) Development of an opening-tearing mode fracture system for composite materials. EPJ Web Conf 6:42008

    Article  Google Scholar 

  45. Jun X (1996) Experimental study on Mode III fracture toughness of multi-directional interface of composite materials. J Nanjing Univ Aeronaut Astronaut 28(2):267–270

    Google Scholar 

  46. Yulong D, Liese W (1995) On the nodal structure of bamboo. J Bamboo Res 14(1):24–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoping Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, Z., Wang, F. (2018). Interlaminar Fracture Properties of Bamboo. In: The Fracture Mechanics of Plant Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-9017-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9017-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9016-5

  • Online ISBN: 978-981-10-9017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics