Skip to main content

An Integral Formula Adapted to Different Boundary Conditions for Arbitrarily High-Dimensional Nonlinear Klein–Gordon Equations

  • Chapter
  • First Online:
  • 511 Accesses

Abstract

This chapter is concerned with the initial-boundary value problem for arbitrarily high-dimensional Klein–Gordon equations, posed on a bounded domain \(\varOmega \subset \mathbb {R}^d\) for \(d \ge 1\) and subject to suitable boundary conditions. We derive and analyse an integral formula which proves to be adapted to different boundary conditions for general Klein–Gordon equations in arbitrarily high-dimensional spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

    Chapter  Google Scholar 

  4. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers, 3rd edn. Birkhäuser, Springer, New York, Dordrecht, Heidelberg, London (2012)

    Chapter  Google Scholar 

  5. Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  6. Eilbeck, J.C.: Numerical studies of solitons. In: Bishop, A.R., Schneider, T. (eds.) Solitons and Condensed Matter Physics, pp. 28–43. Springer, New York (1978)

    Chapter  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  8. Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press, Manchester (1990)

    MATH  Google Scholar 

  9. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  Google Scholar 

  10. García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  Google Scholar 

  12. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)

    Article  MathSciNet  Google Scholar 

  13. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  Google Scholar 

  14. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  16. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, New York (1990)

    MATH  Google Scholar 

  17. Kragh, H.: Equation with many fathers. Klein–Gordon equation in 1926. Am. J. Phys. 52, 1024–1033 (1984)

    Article  MathSciNet  Google Scholar 

  18. Liu, C., Wu, X.Y.: The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications. Appl. Math. Lett. 74, 60–67 (2017)

    Article  MathSciNet  Google Scholar 

  19. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  20. Schiesser, W.: The Numerical Methods of Lines: Integration of Partial Differential Equation. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  21. Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)

    Article  MathSciNet  Google Scholar 

  22. Shi, W., Wu, X.Y., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian wave equations. J. Comput. Phys. 231, 7671–7694 (2012)

    Article  MathSciNet  Google Scholar 

  23. Van de Vyver, H.: Scheifele two-step methods for perturbed oscillators. J. Comput. Appl. Math. 224, 415–432 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wang, B., Wu, X.Y.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A. 376, 1185–1190 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, B., Liu, K., Wu, X.Y.: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243, 210–223 (2013)

    Article  MathSciNet  Google Scholar 

  26. Wang, B., Iserles, A., Wu, X.Y.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. (2014). https://doi.org/10.1007/s10208-014-9241-9

  27. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

    Article  MathSciNet  Google Scholar 

  28. Wu, X.Y., Liu, C.: An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein–Gordon equations with its applications. J. Math. Phys. 57, 021504 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wu, X.Y., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180, 2250–2257 (2009)

    Article  MathSciNet  Google Scholar 

  30. Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181, 1873–1887 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wu, X.Y., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wu, X.Y., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Heidelberg (2013)

    Book  Google Scholar 

  33. Wu, X.Y., Mei, L.J., Liu, C.: An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions. J. Math. Anal. Appl. 426, 1164–1173 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wu, X.Y., Liu, K., Shi, W.: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Heidelberg (2015)

    Book  Google Scholar 

  35. Yang, H., Zeng, X., Wu, X. Y.: Variation-of-constants formulae for Maxwell’s equations in time domain, A seminar report at Nanjing University (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Wu .

Appendix 1. A Direct Proof of Theorem 9.6

Appendix 1. A Direct Proof of Theorem 9.6

Proof

It follows from (9.37) that

$$\begin{aligned} \begin{aligned}&\Big (\dfrac{\partial u}{\partial x}\Big )_{tt}=a^2\varDelta \Big (\dfrac{\partial u}{\partial x}\Big )+\tilde{f}(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{\prime \prime }(t_0)=&{}a^2\varDelta \varphi '_1(x_l)+\tilde{f}\big (u\big ),\\ \delta ^{\prime \prime }(t_0)=&{}a^2\varDelta \varphi '_1(x_r)+\tilde{f}\big (u\big ), \end{array}\right. \\&\Big (\dfrac{\partial u}{\partial x}\Big )^{(3)}_{t}=a^2\varDelta \Big (\dfrac{\partial u}{\partial x}\Big )_t+\tilde{f}'_t(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{(3)}(t_0)=&{}a^2\varDelta \varphi '_2(x_l)+\tilde{f}'_t\big (u\big ),\\ \delta ^{(3)}(t_0)=&{}a^2\varDelta \varphi '_2(x_r)+\tilde{f}'_t\big (u\big ), \end{array}\right. \\&\Big (\dfrac{\partial u}{\partial x}\Big )^{(4)}_{t}=a^4\varDelta ^2 \Big (\dfrac{\partial u}{\partial x}\Big )+a^2\varDelta \tilde{f}(u)+\tilde{f}^{(2)}_{t}(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{(4)}(t_0)=&{}a^4\varDelta ^2 \varphi '_1(x_l)+a^2\varDelta \tilde{f}\big (u\big )+\tilde{f}^{(2)}_{t}\big (u\big ),\\ \delta ^{(4)}(t_0)=&{}a^4\varDelta ^2 \varphi '_1(x_r)+a^2\varDelta \tilde{f}\big (u\big )+\tilde{f}^{(2)}_{t}\big (u\big ),\\ \end{array}\right. \\&\Big (\dfrac{\partial u}{\partial x}\Big )^{(5)}_{t}=a^4\varDelta ^2 \Big (\dfrac{\partial u}{\partial x}\Big )_t+a^2\varDelta \tilde{f}'_t(u)+\tilde{f}^{(3)}_{t}(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{(5)}(t_0)=&{}a^4\varDelta ^2 \varphi '_2(x_l)+a^2\varDelta \tilde{f}'_t\big (u\big )+\tilde{f}^{(3)}_{t}\big (u\big ),\\ \delta ^{(5)}(t_0)=&{}a^4\varDelta ^2 \varphi '_2(x_r)+a^2\varDelta \tilde{f}'_t\big (u\big )+\tilde{f}^{(3)}_{t}\big (u\big ),\\ \end{array}\right. \\&\Big (\dfrac{\partial u}{\partial x}\Big )^{(6)}_{t}=a^6\varDelta ^3 \Big (\dfrac{\partial u}{\partial x}\Big )+a^4\varDelta ^2 \tilde{f}(u)+a^2\varDelta \tilde{f}^{(2)}_t(u)+\tilde{f}^{(4)}_{t}(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{(6)}(t_0)=&{}a^6\varDelta ^3 \varphi '_1(x_l)+a^4\varDelta ^2 \tilde{f}\big (u\big )\\ &{}+a^2\varDelta \tilde{f}^{(2)}_{t}\big (u\big )+\tilde{f}^{(4)}_{t}\big (u\big ),\\ \delta ^{(6)}(t_0)=&{}a^6\varDelta ^3 \varphi '_1(x_r)+a^4\varDelta ^2\tilde{f}\big (u\big )\\ &{}+a^2\varDelta \tilde{f}^{(2)}_{t}\big (u\big )+\tilde{f}^{(4)}_{t}\big (u\big ),\\ \end{array}\right. \\&\Big (\dfrac{\partial u}{\partial x}\Big )^{(7)}_{t}=a^6\varDelta ^3 \Big (\dfrac{\partial u}{\partial x}\Big )_t+a^4\varDelta ^2\tilde{f}'_t(u)+a^2\varDelta \tilde{f}^{(3)}_t(u)+\tilde{f}^{(5)}_{t}(u)\\&\qquad \qquad \Rightarrow \left\{ \begin{array}{ll} \gamma ^{(7)}(t_0)=&{}a^6\varDelta ^3 \varphi '_2(x_l)+a^4\varDelta ^2\tilde{f}'_t\big (u\big ) \\ &{}+a^2\varDelta \tilde{f}^{(3)}_t\big (u\big )+\tilde{f}^{(5)}_{t}\big (u\big ),\\ \delta ^{(7)}(t_0)=&{}a^6\varDelta ^3 \varphi '_2(x_r)+a^4\varDelta ^2\tilde{f}'_t\big (u\big )\\ &{}+a^2\varDelta \tilde{f}^{(3)}_t\big (u\big )+\tilde{f}^{(5)}_{t}\big (u\big ),\\ \end{array}\right. \\&\cdots . \end{aligned} \end{aligned}$$

After an argument by induction we obtain the following results

$$\begin{aligned} \begin{aligned}&\gamma ^{(2k)}=a^{2k}\varDelta ^k\varphi '_1(x_l)+\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\gamma ^{(2k+1)}=a^{2k}\varDelta ^k\varphi '_2(x_l)+\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big ),\quad k=1,2,\dots . \end{aligned} \end{aligned}$$
(9.61)

and

$$\begin{aligned} \begin{aligned}&\delta ^{(2k)}(t_0)=a^{2k}\varDelta ^k\varphi '_1(x_r)+\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\delta ^{(2k+1)}(t_0)=a^{2k}\varDelta ^k\varphi '_2(x_r)+\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big ),\quad k=1,2,\dots . \end{aligned} \end{aligned}$$
(9.62)

Inserting the results of (9.61) and (9.62) into the Taylor expansion of \(\gamma (t)\) and \(\delta (t)\) at point \(t_0\) yields

$$\begin{aligned} \begin{aligned} \gamma (t)&=\Big \{\phi _0\big ((t-t_0)^2a^2\varDelta \big )\varphi '_1(x)+(t-t_0)\phi _1\big ((t-t_0)^2a^2\varDelta \big )\varphi '_2(x)\\&\quad +\sum \limits _{k=1}^{\infty }\Big [\dfrac{(t-t_0)^{2k}}{(2k)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\quad +\dfrac{(t-t_0)^{2k+1}}{(2k+1)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big )\Big ]\Big \}\Big |_{x=x_l}, \end{aligned} \end{aligned}$$
(9.63)

and

$$\begin{aligned} \begin{aligned} \delta (t)&=\Big \{\phi _0\big ((t-t_0)^2a^2\varDelta \big )\varphi '_1(x)+(t-t_0)\phi _1\big ((t-t_0)^2a^2\varDelta \big )\varphi '_2(x)\\&\quad +\sum \limits _{k=1}^{\infty }\Big [\dfrac{(t-t_0)^{2k}}{(2k)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\quad +\dfrac{(t-t_0)^{2k+1}}{(2k+1)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big )\Big ]\Big \}\Big |_{x=x_r}. \end{aligned} \end{aligned}$$
(9.64)

Let

$$\tilde{F}(x,t)\triangleq \int _{t_0}^t(t-\zeta )\phi _1\big ((t-t_0)^2a^2\varDelta \big )\hat{f}\big (\zeta \big )\mathrm{d}\zeta .$$

As deduced for the Dirichlet boundary conditions in Sect. 9.4.1, it can be shown that

$$\begin{aligned} \begin{aligned}&\tilde{F}^{(2k)}_t=\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\tilde{F}^{(2k+1)}_t=\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big ),\quad k=1,2,\dots . \end{aligned} \end{aligned}$$
(9.65)

Inserting (9.65) into the Taylor expansion of \(\tilde{F}(x,t)\) at the point \(t=t_0\) gives

$$\begin{aligned} \begin{aligned} \tilde{F}(x,t)&=\sum \limits _{k=0}^{\infty }\dfrac{(t-t_0)^k}{k!}\tilde{F}^{(k)}_t=\sum \limits _{k=2}^{\infty }\dfrac{(t-t_0)^k}{k!}\tilde{F}^{(k)}_t\\&=\sum \limits _{k=1}^{\infty }\dfrac{(t-t_0)^{2k}}{(2k)!}\tilde{F}^{(2k)}_t+\sum \limits _{k=1}^{\infty }\dfrac{(t-t_0)^{2k+1}}{(2k+1)!}\tilde{F}^{(2k+1)}_t\\&=\sum \limits _{k=1}^{\infty }\Big [\dfrac{(t-t_0)^{2k}}{(2k)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-2)}_t\big (u\big )\\&\quad +\dfrac{(t-t_0)^{2k+1}}{(2k+1)!}\sum \limits ^{k}_{j=1}a^{2(k-j)}\varDelta ^{k-j}\tilde{f}^{(2j-1)}_t\big (u\big )\Big ]. \end{aligned} \end{aligned}$$
(9.66)

Comparing the results of (9.66) with (9.63) and (9.64) yields

$$\begin{aligned} \begin{aligned}&\gamma (t)=\Big [\phi _0\big ((t-t_0)^2a^2\varDelta \big )\varphi '_1(x)+(t-t_0)\phi _1\big ((t-t_0)^2a^2\varDelta \big )\varphi '_2(x) \\&+\int _{t_0}^t(t-\zeta )\phi _1\big ((t-\zeta )^2a^2\varDelta \big )\hat{f}\big (\zeta \big )\mathrm{d}\zeta \Big ]\Big |_{x=x_l},\\&\delta (t)=\Big [\phi _0\big ((t-t_0)^2a^2\varDelta \big )\varphi '_1(x)+(t-t_0)\phi _1\big ((t-t_0)^2a^2\varDelta \big )\varphi '_2(x) \\&+\int _{t_0}^t(t-\zeta )\phi _1\big ((t-\zeta )^2a^2\varDelta \big )\hat{f}\big (\zeta \big )\mathrm{d}\zeta \Big ]\Big |_{x=x_r}.\\ \end{aligned} \end{aligned}$$

This finishes the direct proof.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. And Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., Wang, B. (2018). An Integral Formula Adapted to Different Boundary Conditions for Arbitrarily High-Dimensional Nonlinear Klein–Gordon Equations. In: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Singapore. https://doi.org/10.1007/978-981-10-9004-2_9

Download citation

Publish with us

Policies and ethics