Skip to main content

Application of Lead-Free Piezoelectric Materials

  • Chapter
  • First Online:
Advances in Lead-Free Piezoelectric Materials

Abstract

After twenty years of enthusiastic researches into lead-free piezoelectric materials, the most eager prospects are transforming into the real applications. This chapter reviews the recent application progresses for lead-free piezoelectric materials, including piezoelectric energy harvesting devices, ultrasonic transducers, piezoelectric actuators, pyroelectric IR detectors, piezoelectric transformers and ultrasonic motors. The electrical parameters of active elements and devices performance are systematically discussed, which are almost compared with lead-based ones. Additionally, those challenges in lead-free piezoelectric materials and suggestions for the next research requirements for practical applications are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao LS, Guo HZ, Zhang SJ, Randall CA (2016) Base metal co-fired multilayer piezoelectrics. Actuators 5:8–28

    Article  Google Scholar 

  2. Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son J-S, Ahn C-W, Jo W (2016) Lead-free piezoceramics-where to move on? J Materiom 2:1–24

    Article  Google Scholar 

  3. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  Google Scholar 

  4. Jung JH, Chen CY, Yun BK, Lee N, Zhou YS, Jo W, Chou LJ, Wang ZL (2012) Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23:37540

    Google Scholar 

  5. Kim S, Lee JH, Lee J, Kim SW, Kim MH, Park S, Chung H, Kim Y, Kim W (2013) Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature. J Am Chem Soc 135:6–9

    Article  CAS  Google Scholar 

  6. Joung MR, Xu HB, Seo IT, Kim DH, Hur J, Nahm S, Kang CY, Yoon SJ, Park HM (2014) Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures. J Mater Chem A 2:18547–18553

    Article  CAS  Google Scholar 

  7. Ganeshkumar R, Cheah CW, Xu R, Kim SG, Zhao R (2017) A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers. Appl Phys Lett 111:013905

    Article  CAS  Google Scholar 

  8. Jung JH, Lee M, Hong J, Ding Y, Chen CY, Chou LJ, Wang ZL (2011) Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5:10041–10046

    Article  CAS  Google Scholar 

  9. Xue QT, Wang Z, Tian H, Huan Y, Xie QY, Yang Y, Xie D, Li C, Shu Y, Wang XH, Ren TL (2015) A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator. AIP Adv 5:017102

    Article  CAS  Google Scholar 

  10. Kang HB, Chang JY, Koh K, Lin LW, Cho YS (2014) High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl Mater Interfaces 6:10576–10582

    Article  CAS  Google Scholar 

  11. Zhu RJ, Jiang JY, Wang ZM, Cheng ZX, Kimura H (2016) High output power density nanogenerator based on lead-free 0.96(K0.48Na0.52)(Nb0.95Sb0.05)O3–0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric nanofibers. RSC Adv 6:66451

    Article  CAS  Google Scholar 

  12. Jeong CK, Park K, Ryu J, Hwang GT, Lee KJ (2014) Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv Funct Mater 24:2620–2629

    Article  CAS  Google Scholar 

  13. Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709

    Article  CAS  Google Scholar 

  14. Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943

    Article  CAS  Google Scholar 

  15. Gao T, Liao J, Wang J, Qiu Y, Yang Q, Zhang MQ, Zhao Y, Qin L, Xue H, Xiong Z, Chen L, Wang Q (2015) Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. J Mater Chem A 3:9965–9971

    Article  CAS  Google Scholar 

  16. Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, Kim JE, Kim SO, Kim DK, Wang ZL, Lee KJ (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2999–3004

    Article  CAS  Google Scholar 

  17. Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 Nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604

    Article  CAS  Google Scholar 

  18. Shin SH, Kim YH, Lee MH, Jung JY, Nah J (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773

    Article  CAS  Google Scholar 

  19. Zhou Z, Zhou Z, Sodano HA (2014) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296

    Article  Google Scholar 

  20. Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y (2013) Flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 5:1781–1787

    Article  CAS  Google Scholar 

  21. Jeong CK, Kim I, Park K, Oh MH, Paik H, Hwang GT, No K, Nam YS, Lee KJ (2013) Flexible nanogenerator based on single BaTiO3 nanowire flexible nanogenerator based on single BaTiO3 nanowire. Sci Adv Mater 7:11016–11025

    CAS  Google Scholar 

  22. Siddiqui S, Kim D, Duy LT, Nguyen MT, Muhammad S, Yoon WS, Lee NF (2015) High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15:177–185

    Article  CAS  Google Scholar 

  23. Zhang G, Liao QL, Zhang Z, Liang QJ, Zhao YL, Zheng X, Zhang Y (2016) Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv Sci 3:1500257

    Article  CAS  Google Scholar 

  24. Zhao YL, Liao QL, Zhang GJ, Zhang Z, Liang Q, Liao XQ, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 Ps@PVDF. Nano Energy 11:719–727

    Article  CAS  Google Scholar 

  25. Wu WW, Cheng L, Bai S, Dou W, Xu Q, Wei ZY, Qin Y (2013) Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A 1:7332–7338

    Article  CAS  Google Scholar 

  26. Lee KY, Kumar B, Seo JS, Kim KH, Sohn JI, Cha SN, Choi D, Wang ZL, Kim SW (2012) P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett 12:1959–1964

    Article  CAS  Google Scholar 

  27. Karanth D, Fu H (2005) Large electromechanical response in ZnO and its microscopic origin. Phys Rev B 72:064116

    Article  CAS  Google Scholar 

  28. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602

    Article  CAS  Google Scholar 

  29. Yang Q, Wang D, Zhang M, Gao T, Xue H, Wang Z, Xiong ZX (2016) Lead-free (Na0.83K0.17)0.5Bi0.5TiO3 nanofibers for wearable piezoelectric nanogenerators. J Alloy Compd 688:1066–1071

    Article  CAS  Google Scholar 

  30. Alam MM, Ghosh SK, Sultana A, Mandal D (2015) Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnology 26:165403

    Article  CAS  Google Scholar 

  31. Wu JM, Xu C, Zhang Y, Yang Y, Zhou Y, Wang ZL (2012) Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts. Adv Mater 24:6094–6099

    Article  CAS  Google Scholar 

  32. Lee KY, Kim D, Lee JH, Kim TY, Gupta MK, Kim SW (2014) Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator. Adv Funct Mater 24:37–43

    Article  CAS  Google Scholar 

  33. Zhu G, Wang AC, Liu Y, Zhou YS, Wang ZL (2012) Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 12:3086–3090

    Article  CAS  Google Scholar 

  34. Wang G, Xin Y, Xuan HX, Liu RC, Chen X, Cheng L (2015) Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes. Nano Energy 18:28–36

    Article  CAS  Google Scholar 

  35. Chen X, Xu SY, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133–2137

    Article  CAS  Google Scholar 

  36. Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6:6231–6235

    Article  CAS  Google Scholar 

  37. Kwon J, Seung W, Sharma BK, Kim SW, Ahn JH (2012) A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energ Environ Sci 5:8970

    Article  CAS  Google Scholar 

  38. Gu L, Cui NY, Cheng L, Xu Q, Bai S, Yuan M, Wu W, Liu JM, Zhao Y, Ma F, Qin Y, Wang ZL (2013) Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano Lett 13:91–94

    Article  CAS  Google Scholar 

  39. Park K, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520

    Article  CAS  Google Scholar 

  40. Zhao QL, He GP, Di JJ, Song WL, Hou ZL, Tan PP, Wang DW, Cao MS (2017) Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single crystal nanowires. ACS Appl Mater Interfaces 9:24696–24703

    Article  CAS  Google Scholar 

  41. Chen Y, Lam KH, Zhou D, Yue QW, Yu YX, Wu JC, Qiu WB, Sun L, Zhang C, Luo HS, Chan HLW, Dai JY (2014) High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications. Sensors 14:13730–13758

    Article  CAS  Google Scholar 

  42. Chen Y, Mei K, Wong CM, Lin DM, Chan HLW, Dai JY (2015) Ultrasonic transducer fabricated using lead-free BFO-BTO + Mn piezoelectric 1-3 composite. Actuators 4:127–134

    Article  Google Scholar 

  43. Edwards GC, Choy SH, Chan HLW, Scott DA, Batten A (2007) Lead-free transducer for non-destructive evaluation. Appl Phys A 88:209–215

    Article  CAS  Google Scholar 

  44. Hagh NM, Jadidian B, Ashbahian E, Safari A (2008) Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE Trans Ultrason Ferroelectr Freq Control 55:214–224

    Article  Google Scholar 

  45. Bantignies C, Filoux E, Mauchamp P, Dufait R, Thi MP, Rouffaud R, Grégoire JM, Levassort F (2013) Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging. Ultrasonics Symposium (IUS), IEEE International. IEEE, pp 785–788

    Google Scholar 

  46. Shen ZY, Li JF, Chen RM, Zhou QF, Shung KK (2011) Microscale 1-3-type (Na,K)NbO3-Based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J Am Ceram Soc 94:1346–1349

    Article  CAS  Google Scholar 

  47. Ma JP, Xue SD, Zhao XY, Wang FF, Tang YX, Duan ZH, Wang T, Shi WZ, Yue QW, Zhou HF, Luo HS, Fang BJ (2017) High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal. Appl Phys Lett 111:092903

    Article  CAS  Google Scholar 

  48. Zeyu Chen ZY, Zheng LM, Cao WW, Chen XY, Chen RM, Li RZ, Shung KK, Zhou QF (2017) High-frequency ultrasonic imaging with lead-free (Na,K)(Nb, Ta)O3 single crystal. Ultrason Imaging 39(6):348–356

    Article  Google Scholar 

  49. Yang JO, Zhu BP, Zhang Y, Chen S, Yang XF, Wei W (2015) New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications. Appl Phys A 118:1177–1181

    Article  CAS  Google Scholar 

  50. Hejazi MM, Jadidian B, Safari A (2012) Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer. IEEE Trans Ultrason Ferroelectr Freq Control 59:1840–1847

    Article  Google Scholar 

  51. Chen Y, Jiang XP, Luo HS, Dai JY, Chan HIW (2010) High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal. IEEE Trans Ultrason Ferroelectr Freq Control 57:2601–2604

    Article  Google Scholar 

  52. Yan XW, Lam KH, Li X, Chen RM, Ren W, Ren XB, Zhou QF, Shung KK (2013) Correspondence: lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 60:1272–1276

    Article  Google Scholar 

  53. Lee STF, Lam KH, Zhang XM, Chan HLW (2011) High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics 51:811–814

    Article  CAS  Google Scholar 

  54. Zhou QF, Xu XC, Gottlieb EJ, Sun L, Cannata JM, Ameri H, Humayun MS, Han PD, Shung KK (2007) PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave doppler application. IEEE Trans Ultrason Ferroelectr Freq Control 54:668–675

    Article  Google Scholar 

  55. Zhou QF, Wu DW, Jin J, Hu CH, Xu XC, Williams J, Cannata JM, Lim L, Shung KK (2008) Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 55:1394–1399

    Article  Google Scholar 

  56. Sun P, Zhou QF, Zhu BP, Wu DW, Hu CH, Cannata JM, Tian J, Han PD, Wang GF, Shung KK (2009) Design and fabrication of PIN-PMN-PT single crystal high-frequency ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 56:2760–2763

    Article  Google Scholar 

  57. Lam KH, Ji HF, Zheng F, Ren W, Zhou QF, Shung KK (2013) Development of lead-free single-element ultrahigh frequency (170–320 MHz) ultrasonic transducers. Ultrasonics 53:1033–1038

    Article  CAS  Google Scholar 

  58. Wu DW, Zhou QF, Geng XC, Liu CG, Djuth F, Shung KK (2009) Very high frequency (beyond 100 MHz) PZT kerfless linear arrays. IEEE Trans Ultrason Ferroelectr Freq Control 25:2304–2310

    Article  Google Scholar 

  59. Ditas P, Hennig E, Kynast A (2014) Lead-free piezoceramic materials for ultrasonic applications. In: Proceedings of 17. ITG/GMA Symposium on Sensors and Measuring Systems 2014. VDE, pp 1–4

    Google Scholar 

  60. Gao J, Xue D, Liu W, Zhou C, Ren X (2017) Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6:24

    Article  Google Scholar 

  61. Jaffe B (2012) Piezoelectric ceramics, vol 3. Elsevier, Amsterdam

    Google Scholar 

  62. Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28:574–578

    Article  CAS  Google Scholar 

  63. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  64. Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho JH, Kim BI, Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem Mater 24:3363–3369

    Article  CAS  Google Scholar 

  65. Yao FZ, Wang K, Jo W, Webber KG, Comyn TP, Ding JX, Xu B, Cheng LQ, Zheng MP, Hou YD (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26:1217–1224

    Article  CAS  Google Scholar 

  66. Chaiyo N, Cann DP, Vittayakorn N (2017) Lead-free (Ba,Ca)(Ti,Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains. Mater Design 133:109–121

    Article  CAS  Google Scholar 

  67. Liu Y, Chang Y, Li F, Yang B, Sun Y, Wu J, Zhang S, Wang R, Cao W (2017) Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl Mater Interfaces 9:29863–29871

    Article  CAS  Google Scholar 

  68. Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102

    Article  CAS  Google Scholar 

  69. Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe H-J, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties. J Appl Phys 103:034108

    Article  CAS  Google Scholar 

  70. Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27:6976–6982

    Article  CAS  Google Scholar 

  71. Kim MS, Jeon S, Lee D-S, Jeong S-J, Song J-S (2009) Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator. J Electroceram 23:372–375

    Article  CAS  Google Scholar 

  72. Lee KS, Yoo J, Hwang L (2017) Electrical properties of (Na,K, Li)(Nb, Sb, Ta)O3 ceramics for multilayer-type piezoelectric actuator. Ferroelectrics 515:18–24

    Article  CAS  Google Scholar 

  73. Kawada S, Hayashi H, Ishii H, Kimura M, Ando A, Omiya S, Kubodera N (2015) Potassium sodium niobate-based lead-free piezoelectric multilayer ceramics co-fired with nickel electrodes. Materials 8:7423–7438

    Article  CAS  Google Scholar 

  74. Kawada S, Kimura M, Higuchi Y, Takagi H (2009) (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl Phys Express 2:111401

    Article  CAS  Google Scholar 

  75. Gao L, Ko SW, Guo H, Hennig E, Randall CA (2016) Demonstration of copper co-fired (Na,K)NbO3 multilayer structures for piezoelectric applications. J Am Ceram Soc 99:2017–2023

    Article  CAS  Google Scholar 

  76. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  CAS  Google Scholar 

  77. Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K (2017) The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537

    Article  CAS  Google Scholar 

  78. Kang J-K, Han H-S, Jeong S-K, Ahn KK, Jeong S-J, Lee J-S (2013) Microwave and conventional sintering of lead-free (K,Na)NbO3-based piezoelectric ceramic multilayer actuators. J Ceram Process Res 14:230–233

    Google Scholar 

  79. Gao R, Chu X, Huan Y, Wang X, Li L (2014) Investigation on co-fired multilayer KNN-based lead-free piezoceramics. Phys Status Solidi A 211:2378–2383

    Article  CAS  Google Scholar 

  80. Liu C, Liu P, Kobayashi K, Randall CA (2014) Base metal co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance. J Electroceram 32:301–306

    Article  CAS  Google Scholar 

  81. Kobayashi K, Doshida Y, Mizuno Y, Randall CA (2013) Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator. Jpn J Appl Phys 52:09KD07

    Article  CAS  Google Scholar 

  82. Nagata H, Hiruma Y, Takenaka T (2010) Electric-field-induced strain for (Bi1/2Na1/2)TiO3-based lead-free multilayer actuator. J Ceram Soc Jpn 118:726–730

    Article  CAS  Google Scholar 

  83. Nguyen V-Q, Kang J-K, Han H-S, Lee H-Y, Jeong S-J, Ahn C-W, Kim I-W, Lee J-S (2013) Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 composite inner electrodes. Sensors Actuat A-Phys 200:107–113

    Article  CAS  Google Scholar 

  84. Khesro A, Wang D, Hussain F, Sinclair DC, Feteira A, Reaney IM (2016) Temperature stable and fatigue resistant lead-free ceramics for actuators. Appl Phys Lett 109:142907

    Article  CAS  Google Scholar 

  85. Ahn CW, Kim HS, Woo WS, Won SS, Seog HJ, Chae SA, Park BC, Jang KB, Ok YP, Chong HH (2015) Low-temperature sintering of Bi0.5(Na,K)0.5TiO3 for multilayer ceramic actuators. J Am Ceram Soc 98:1877–1883

    Article  CAS  Google Scholar 

  86. Koruza J, Rojas V, Molina-Luna L, Kunz U, Duerrschnabel M, Kleebe H-J, Acosta M (2016) Formation of the core-shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties. J Eur Ceram Soc 36:1009–1016

    Article  CAS  Google Scholar 

  87. Groh C, Franzbach DJ, Jo W, Webber KG, Kling J, Schmitt LA, Kleebe HJ, Jeong SJ, Lee JS, Rödel J (2014) Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv Funct Mater 24:356–362

    Article  CAS  Google Scholar 

  88. Ahn CW, Choi G, Kim IW, Lee J-S, Wang K, Hwang Y, Jo W (2017) Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics. NPG Asia Mater 9:e346

    Article  CAS  Google Scholar 

  89. Cho J-H, Park J-S, Kim S-W, Jeong Y-H, Yun J-S, Park W-I, Hong Y-W, Paik J-H (2017) Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3 ceramics. J Eur Ceram Soc 37:3313–3318

    Article  CAS  Google Scholar 

  90. Acosta M, Schmitt LA, Molina-Luna L, Scherrer MC, Brilz M, Webber KG, Deluca M, Kleebe HJ, Rödel J, Donner W (2015) Core-shell lead-free piezoelectric ceramics: Current status and advanced characterization of the Bi1/2Na1/2TiO3-SrTiO3 system. J Am Ceram Soc 98:3405–3422

    Article  CAS  Google Scholar 

  91. Choy S, Jiang X, Kwok K, Chan H (2010) Piezoelectric and dielectric characteristics of lead-free BNKLBT ceramic thick film and multilayered piezoelectric actuators. Ceram Int 36:2345–2350

    Article  CAS  Google Scholar 

  92. Tong X-Y, Zhou J-J, Wang K, Liu H, Fang J-Z (2017) Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc 37:4617–4623

    Article  CAS  Google Scholar 

  93. Sapper E, Gassmann A, Gjødvad L, Jo W, Granzow T, Rödel J (2014) Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J Eur Ceram Soc 34:653–661

    Article  CAS  Google Scholar 

  94. Krauss W, Schütz D, Naderer M, Orosel D, Reichmann K (2011) BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J Eur Ceram Soc 31:1857–1860

    Article  CAS  Google Scholar 

  95. Nagata H, Tabuchi K, Takenaka T (2013) Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 52:09KD05

    Article  CAS  Google Scholar 

  96. Malik RA, Hussain A, Maqbool A, Zaman A, Ahn CW, Rahman JU, Song TK, Kim WJ, Kim MH (2015) Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 98:3842–3848

    Article  CAS  Google Scholar 

  97. Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1

    Article  CAS  Google Scholar 

  98. Abe K, Uchino K, Nomura S (1986) Barium titanate-based actuator with ceramic internal electrodes. Ferroelectrics 68:215–223

    Article  CAS  Google Scholar 

  99. Long P, Liu X, Long X, Yi Z (2017) Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba,Ca)(Ti,Sn)O3 ceramics and their multilayer piezoelectric actuators. J Alloys Compd 706:234–243

    Article  CAS  Google Scholar 

  100. Long P, Yi Z (2017) Fabrication and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics and their multilayer piezoelectric actuators. Int J Appl Ceram Tec 14:16–21

    Article  CAS  Google Scholar 

  101. Lam K, Wang X, Chan H (2006) Lead-free piezoceramic cymbal actuator. Sensors Actuat A-Phys 125:393–397

    Article  CAS  Google Scholar 

  102. Wang X, Or S, Lam K, Chan H, Choy P, Liu P (2006) Cymbal actuator fabricated using (Na0.46K0.46Li0.08)NbO3 lead-free piezoceramic. J Electroceram 16:385–388

    Article  CAS  Google Scholar 

  103. Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luan Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3:9468–9479

    Article  CAS  Google Scholar 

  104. Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386

    Article  CAS  Google Scholar 

  105. Lee MH, Guo R, Bhalla AS (1998) Pyroelectric sensors. J Electroceram 2:229–242

    Article  Google Scholar 

  106. Rogalski A (2003) Infrared detectors: status and trends. Prog Quant Wlectron 27:59–210

    Article  CAS  Google Scholar 

  107. Batra AK, Aggarwal MD, Edwards ME, Bhalla A (2008) Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics 366:84–121

    Article  CAS  Google Scholar 

  108. Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R (2014) Pyroelectric materials and devices for energy harvesting applications. Energ Environ Sci 7:3836–3856

    Article  Google Scholar 

  109. Li X, Lu SG, Chen XZ, Gu H, Qian XS, Zhang QM (2013) Pyroelectric and electrocaloric materials. J Mater Chem C 1:23–37

    Article  CAS  Google Scholar 

  110. Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58:31–36

    Article  CAS  Google Scholar 

  111. Srikanth KS, Vaish R (2017) Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1-xO3 ceramics. J Eur Ceram Soc 37:3927–3933

    Article  CAS  Google Scholar 

  112. Yao S, Ren W, Ji H, Wu X, Shi P, Xue D, Ren X, Ye ZG (2012) High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics. J Phys D: Appl Phys 45:195301

    Article  CAS  Google Scholar 

  113. Liu X, Chen Z, Wu D, Fang B, Ding J, Zhao X, Xu H, Luo H (2015) Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn J Appl Phys 54:071501

    Article  CAS  Google Scholar 

  114. Patel S, Chauhan A, Vaish R (2016) Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Solid State Sci 52:10–18

    Article  CAS  Google Scholar 

  115. Liu X, Wu D, Chen Z, Fang B, Ding J, Zhao X, Luo H (2015) Ferroelectric, dielectric and pyroelectric properties of Sr and Sn codoped BCZT lead free ceramics. Adv Appl Ceram 114:436–441

    Article  CAS  Google Scholar 

  116. Zhang G, Jiang S, Zeng Y, Zhang Y, Zhang Q, Yu Y (2009) High pyroelectric properties of porous Ba0.67Sr0.33TiO3 for uncooled infrared detectors. J Am Ceram Soc 92:3132–3134

    Article  CAS  Google Scholar 

  117. Jiang S, Liu P, Zhang X, Zhang L, Li Q, Yao J, Zeng Y, Wang Q, Zhang G (2015) Enhanced pyroelectric properties of porous Ba0.67Sr0.33TiO3 ceramics fabricated with carbon nanotubes. J Alloy Compd 636:93–96

    Article  CAS  Google Scholar 

  118. Mao C, Yan S, Cao S, Yao C, Cao F, Wang G, Dong X, Hu X, Yang C (2014) Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J Eur Ceram Soc 34:2933–2939

    Article  CAS  Google Scholar 

  119. Srikanth KS, Singh VP, Vaish R (2017) Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J Eur Ceram Soc 37:3943–3950

    Article  CAS  Google Scholar 

  120. Lau ST, Cheng CH, Choy SH, Lin DM, Kwok KW, Chan HL (2008) Lead-free ceramics for pyroelectric applications. J Appl Phys 103:104105

    Article  CAS  Google Scholar 

  121. Chi Q, Dong J, Zhang C, Wang X, Lei Q (2016) Highly (100)-oriented sandwich structure of (Na0.85K0.15)0.5Bi0.5TiO3 composite films with outstanding pyroelectric properties. J Mater Chem C 4:4442–4450

    Article  CAS  Google Scholar 

  122. Balakt AM, Shaw CP, Zhang Q (2017) Giant pyroelectric properties in La and Ta co-doped lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics. J Alloy Compd 709:82–91

    Article  CAS  Google Scholar 

  123. Balakt AM, Shaw CP, Zhang Q (2017) Enhancement of pyroelectric properties of lead-free 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 ceramics by La doping. J Eur Ceram Soc 37:1459–1466

    Article  CAS  Google Scholar 

  124. Sun R, Wang J, Wang F, Feng T, Li Y, Chi Z, Zhao X, Luo H (2014) Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals. J Appl Phys 115:074101

    Article  CAS  Google Scholar 

  125. Li J, Li Y, Zhou Z, Guo R, Bhalla A (2013) Pyroelectric properties of lead-free ferroelectric niobium-rich potassium lithium tantalate niobate single crystals. Ceram Int 39:8517–8519

    Article  CAS  Google Scholar 

  126. Zhang H, Jiang S, Kajiyoshi K, Xiao J (2010) Dielectric, ferroelectric, pyroelectric, and piezoelectric properties of La-modified lead-free sodium-potassium bismuth titanate thick films. J Am Ceram Soc 93:750–757

    Article  CAS  Google Scholar 

  127. Eberle G, Schmidt H, Eisenmenger W (1996) Piezoelectric polymer electrets. IEEE Trans Dielect Elect Insul 3:624–646

    Article  CAS  Google Scholar 

  128. Sampathkumar P, Srinivasan K (2016) Pyroelectric properties and electrocaloric effect in TGS1-xPx single crystals. Mater Res Express 3:106301

    Article  CAS  Google Scholar 

  129. Liu W, Ko JS, Zhu W (2001) Pyroelectric properties of Pb(Zr, Ti)O3 and Pb(Zr, Ti)O3/PbTiO3 multilayered thin films. Integr Ferroelectr 35:127–135

    Article  CAS  Google Scholar 

  130. Aleksandrov SE, Gavrilov GA, Kapralov AA, Smirnova EP, Sotnikova GY, Sotnikov KA (2004) Characterization of pyroelectric materials for uncooled infrared sensors in dielectric bolometer mode: specific features and setup. In: International society for optics and photonics, lasers for measurements and information transfer. International Society for Optics and Photonics 5381:128–138

    Google Scholar 

  131. Xu Q, Zhao X, Li X, Li L, Yang L, Di W, Jiao J, Luo H (2015) Novel electrode layout for relaxor single crystal pyroelectric detectors with enhanced responsivity and specific detectivity. Sensor Actuat A: Phys 234:82–86

    Google Scholar 

  132. Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization principles. IEEE Trans Ultrason Ferroelectr Freq Control 55:538–551

    Article  Google Scholar 

  133. Lei X, Dong X, Mao C, Chen Y, Cao F, Wang G (2012) Dielectric and enhanced pyroelectric properties of (Pb0.325Sr0.675)TiO3 ceramics under direct current bias field. Appl Phys Lett 101:262901

    Article  CAS  Google Scholar 

  134. Han L, Guo S, Yan S, Cao F, Guo W, Yao C, Dong X, Wang G (2017) Enhanced pyroelectric properties of Pb0.3Ca0.15Sr0.55TiO3 ceramic with first-order dominated phase transition under low bias field. Appl Phys Lett 110:102905

    Article  CAS  Google Scholar 

  135. Sugai T, Kikuchi K, Yoshita R, Akai D, Sawada K, Ishida M (2009) Pyroelectric IR sensor array using lead-free pyroelectric NBT thin film on epitaxial c-Al2O3/Si (100) substrates. In: Solid-state sensors, actuators and microsystems conference. Transducers pp 1971–1974

    Google Scholar 

  136. Zhang WL, Yu YC, Luo WB, Shuai Y, Pan XQ, Wu QQ, Wu CG (2017) Lead free KNN/P(VDF-TrFE) 0-3 pyroelectric composite films and its infrared sensor. Infrared Phys Technol 80:100–104

    Article  CAS  Google Scholar 

  137. Zhu H, Miao J, Noda M, Okuyama M (2004) Preparation of BST ferroelectric thin film by metal organic decomposition for infrared sensor. Sensor Actuat A: Phys 110:371–377

    Article  CAS  Google Scholar 

  138. Jamaluddin A, Susilowati E, Budiawanti S, Iriani Y (2012) Characterization of multilayer thin film Ba0.8Sr0.2TiO3 for lighting sensor application. In: Proceedings of international conferences on physics and applications, pp 49–52

    Google Scholar 

  139. Neumann N, Es-Souni M, Luo H (2009) Application of PMN-PT in pyroelectric detectors. In: 18th IEEE international symposium, applications of ferroelectrics, pp 1–3

    Google Scholar 

  140. Stenger V, Shnider M, Sriram S, Dooley D, Stout M (2012) Thin film lithium tantalate (TFLT) pyroelectric detectors. International society for optics and photonics, p 82610Q

    Google Scholar 

  141. Hsiao CC, Yu SY (2012) Improved response of ZnO films for pyroelectric devices. Sensor 12:17007–17022

    Article  CAS  Google Scholar 

  142. Tan Q-L, Zhang W-D, Xue C-Y, Xiong J-J, Liu J, Li J-H, Liang T (2009) Design, fabrication and characterization of pyroelectric thin film and its application for infrared gas sensors. Microelectronic J 40:58–62

    Article  CAS  Google Scholar 

  143. Li L, Zhao X, Li X, Ren B, Xu Q, Liang Z, Di W, Yang L, Luo H, Shao X, Fang J, Neumann N, Jiao J (2014) Scale effects of low-dimensional relaxor ferroelectric single crystals and their application in novel pyroelectric infrared detectors. Adv Mater 26:2580–2585

    Article  CAS  Google Scholar 

  144. Sharma M, Chauhan A, Vaish R, Chauhan VS (2015) Pyroelectric materials for solar energy harvesting: a comparative study. Smart Mater Struct 24:105013

    Article  CAS  Google Scholar 

  145. Yang Y, Jung JH, Yun BK, Zhang F, Pradel KC, Guo W, Wang ZL (2012) Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv Mater 24:5357–5362

    Article  CAS  Google Scholar 

  146. Madhar NA, Ilahi B, Vaish M (2015) Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr Ferroelectric 167:176–183

    Article  CAS  Google Scholar 

  147. Akai D, Yoshita R, Ishida M (2013) (Na, Bi)TiO3 based lead-free ferroelectric thin films on Si substrate for pyroelectric infrared sensors. J Phys: Conf Ser 433:012017

    Google Scholar 

  148. Chiu CH, Liang WI, Huang CW, Chen JY, Liu YY, Li JY, Hsin CL, Chu YH, Wu WW (2015) Atomic visualization of the phase transition in highly strained BiFeO3 thin films with excellent pyroelectric response. Nano Energy 17:72–81

    Article  CAS  Google Scholar 

  149. Chauhan VS, Sharma SK, Dutta S, Srikanth KS (2017) A study on SBN-POP composites for pyroelectric sensing applications. J Aust Ceram Soc 1–6

    Google Scholar 

  150. Battista L, Mecozzi L, Coppola S, Vespini V, Grilli S, Ferraro P (2014) Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl Energy 136:357–362

    Article  CAS  Google Scholar 

  151. Xie J, Mane XP, Green CW, Mossi KM, Leang KK (2010) Performance of thin piezoelectric materials for pyroelectric energy harvesting. J Intel Mater Syst Struct 21:243–249

    Article  CAS  Google Scholar 

  152. Yamanaka S, Kim J, Nakajima A, Katou T, Kim Y, Fukuda T, Yoshii K, Nishihata Y, Baba M, Yamada N, Nakayama T, Takeda M, Niihara K, Tanaka H (2017) Relationship between the material properties and pyroelectric-generating performance of PZTs. Adv Sustain Syst 1:1700121

    Google Scholar 

  153. Ravindran SKT, Huesgen T, Kroener M, Woias P (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102

    Article  CAS  Google Scholar 

  154. Yang Y, Wang S, Zhang Y, Wang ZL (2012) Pyroelectric nanogenerators for driving wireless sensors. Nano letter 12:6408–6413

    Article  CAS  Google Scholar 

  155. Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh Ryu C, Yoo WJ, Kang C-Y, Yoon S-J, Yoo JB, Kim S-W (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:765–769

    Article  CAS  Google Scholar 

  156. Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang P-K, Yi F, Wang ZL (2015) Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:2340–2347

    Article  CAS  Google Scholar 

  157. Lin RL (2001) Piezoelectric transformer characterization and application of electronic ballast. Ph.D. dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute State University, Blacksburg, VA, USA, 2001

    Google Scholar 

  158. Baker EM, Huang W, Chen DY, Lee FC (2005) Radial mode piezoelectric transformer design for fluorescent lamp ballast applications. IEEE Trans Power Electron 20:1213–1220

    Article  Google Scholar 

  159. Rødgaard MS, Weirich M, Andersen MA (2013) Forward conduction mode controlled piezoelectric transformer-based PFC LED drive. IEEE Trans Power Electron 28:4841–4849

    Article  Google Scholar 

  160. Andersen T (2012) Piezoelectric transformer based power supply for dielectric electro active polymers. Ph.D. dissertation, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark, 2012

    Google Scholar 

  161. Carazo AV (2016) Piezoelectric transformers: an historical review. Actuators 5:12

    Article  Google Scholar 

  162. Zaitsu T, Shigehisa T, Inoue T, Shoyama M, Ninomiya T (1995) Piezoelectric transformer converter with frequency control. In: 17th International of telecommunications energy conference, 1995, INTELEC’95. IEEE, pp 175–180

    Google Scholar 

  163. Alonso JM, Ordiz C, Dalla Costa MA (2008) A novel control method for piezoelectric-transformer based power supplies assuring zero-voltage-switching operation. IEEE Trans Ind Electron 55:1085–1089

    Article  Google Scholar 

  164. Ekhtiari M, Andersen T, Andersen MA, Zhang Z (2017) Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies. IEEE Trans Power Electron 32:783–793

    Article  Google Scholar 

  165. Hamamura S, Kurose D, Ninomiya T, Yamamoto M (2000) New control method of piezoelectric transformer converter by PWM and PFM for wide range of input voltage. In: VII IEEE international on power electronics congress, CIEP 2000. IEEE, pp 3–8

    Google Scholar 

  166. Zaitsu T, Ninomiya T, Shoyama M (1997) Piezoelectric transformer converter with PWM control. IEICE Trans Commun 80:1035–1044

    Google Scholar 

  167. Martin-Ramos JA, Prieto MAJ, García FN, González JD, Linera FF (2002) A new full-protected control mode to drive piezoelectric transformers in DC-DC converters. IEEE Trans Power Electron 17:1096–1103

    Article  Google Scholar 

  168. Rosen CA, Fish K, Rothenberg HC (1958) Voltage mode active clamp PWM controller for high speed operation. U.S. Patent 2830274, 8 Apr 1958

    Google Scholar 

  169. Yoo J, Yoon K, Hwang S, Suh S, Kim J, Yoo C (2001) Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp. Sensor Actuat A-Phys 90:132–137

    Article  CAS  Google Scholar 

  170. Yang Z, Tang WH, Shintemirov A, Wu QH (2009) Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers. Trans Syst Man Cybern Part C (Appl Rev) 39:597–610

    Article  Google Scholar 

  171. Lin D, Guo MS, Lam KH, Kwok KW, Chan HLW (2008) Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application. Smart Mater Struct 17:035002

    Article  CAS  Google Scholar 

  172. Heywang W, Lubitz K, Wersing W (2008) Piezoelectricity: evolution and future of a technology. Springer Science & Business Media, vol 114

    Google Scholar 

  173. Gao F, Bozhko S, Costabeber A, Asher GM, Wheeler PW (2017) Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft. IEEE Trans Ind Electron 64(12):9271–9281

    Article  Google Scholar 

  174. Zhao CS (2011) Ultrasonic motors: technologies and applications. Springer Science & Business Media

    Google Scholar 

  175. Willams W, Brown W (1942) Piezoelectric motor. US Patent, 2439499

    Google Scholar 

  176. Sashida T (1982) Trial construction and operation of an ultrasonic vibration drivcn motor. Oyo Butsiuri 51:713–718

    Google Scholar 

  177. Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7:273

    Article  Google Scholar 

  178. Uchino K (1994) Piezoelectric actuators/ultrasonic motors-their developments and markets. In: Proceedings of the ninth IEEE international symposium on applications of ferroelectrics, 1991. IEEE, pp 319–324

    Google Scholar 

  179. Nakamura K, Nakamura T, Yamada K (1993) Torsional actuators using LiNbO3 plates with an inversion layer. Jpn J Appl Phys 32:2415

    Article  CAS  Google Scholar 

  180. Kawai K, Tamura H, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2006) Load characteristics of a diagonally symmetric form ultrasonic motor using a LiNbO3 plate. Proc Symp Ultrason Electron 27:271–272

    Google Scholar 

  181. Tamura H, Kawai K, Takano T, Tomikawa Y, Hirose S, Aoyagi M (2007) Diagonally symmetric form ultrasonic motor using LiNbO3 plate. Jpn J Appl Phys 46:4698

    Article  CAS  Google Scholar 

  182. Tamura H, Shibata K, Aoyagi M, Takano T, Tomikawa Y, Hirose S (2008) Single phase drive ultrasonic motor using LiNbO3 rectangular vibrator. Jpn J Appl Phys 47:4015

    Article  CAS  Google Scholar 

  183. Tamura H, Iwase M, Hirose S, Aoyagi M, Takano T, Tomikawa Y (2008) Measurement of LiNbO3 rectangular plate under large vibration velocity of the first longitudinal and second flexural modes. Jpn J Appl Phys 47:4034

    Article  CAS  Google Scholar 

  184. Tamura H, Morooka T, Yamayoshi Y, Aoyagi M, Takano T, Hirose S (2010) Design and characteristics of mode-coupling LiNbO3 ultrasonic motor depended on width-to-length ratio of the stator vibrator. Jpn J Appl Phys 49:07HE26

    Article  CAS  Google Scholar 

  185. Xie RJ, Akimune Y (2002) Lead-free piezoelectric ceramics in the (1-x)Sr2NaNb5O15–xCa2NaNb5O15 (0.05 ≤ x ≤ 0.35) system. J Mater Chem 12:3156–3161

    Article  CAS  Google Scholar 

  186. Doshida Y, Kishi H, Makiya A, Tanaka S, Uematsu K, Kimura T (2006) Crystal-oriented La-substituted Sr2NaNb5O15 ceramics fabricated using high-magnetic-field method. Jpn J Appl Phys 45:7460

    Article  CAS  Google Scholar 

  187. Doshida Y, Kishimoto S, Ishii K, Kishi H, Tamura H, Tomikawa Y, Hirose S (2007) Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics. Jpn J Appl Phys 46:4921

    Article  CAS  Google Scholar 

  188. Doshida Y, Kishimoto S, Irieda T, Tamura H, Tomikawa Y, Hirose S (2008) Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics. Jpn J Appl Phys 47:4242

    Article  CAS  Google Scholar 

  189. Wu JG, Xiao DQ, Zhu JG (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  CAS  Google Scholar 

  190. Li EZ, Kakemoto H, Wada S, Tsurumi T (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90:1787–1791

    Article  CAS  Google Scholar 

  191. Li EZ, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702

    Article  CAS  Google Scholar 

  192. Li E, Sasaki R, Hoshina T, Takeda H, Tsurumi T (2009) Miniature ultrasonic motor using shear mode of potassium sodium niobate-based lead-free piezoelectric ceramics. Jpn J Appl Phys 48:09KD11

    Google Scholar 

  193. Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J (2013) Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23:4079–4086

    Article  CAS  Google Scholar 

  194. Hong CH, Han HS, Lee JS, Wang K, Yao FZ, Gwon JH, Quyet NV, Jung JK, Jo W (2015) Ring-type rotary ultrasonic motor using lead-free ceramics. J Sens Sci Technol 24:228–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Application of Lead-Free Piezoelectric Materials. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_9

Download citation

Publish with us

Policies and ethics