Skip to main content

Bismuth Layer Structured Ferroelectrics

  • Chapter
  • First Online:
Advances in Lead-Free Piezoelectric Materials

Abstract

The high-temperature piezoelectric materials have been given to considerable attention due to the requirement of some electronic devices. However, relative low Curie temperature of K0.5Na0.5NbO3 (TC ~ 415 °C) and BaTiO3 (TC ~ 120 °C) as well as the depolarization temperature (Td ~ 100 °C) of (Bi0.5Na0.5)TiO3 limit the high-temperature applications. In this chapter, bismuth layer-structured ferroelectrics (BLSFs) with high TC (generally higher than 500 °C) are referred. However, some shortcomings are also addressed, such as high coercive field, poor ferro/piezoelectricity. Due to the lack of phase boundaries, lots of attention mainly focus on the composition modification to improve ferro/piezoelectricity. In addition, some advanced preparation technologies are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagata H, Takenaka T (2002) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with Sr-Bi-Ti-Ta system. Ferroelectrics 273:359–364

    Article  CAS  Google Scholar 

  2. Hong SH, Trolier-Mckinstry S, Messing GL (2000) Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics. J Am Ceram Soc 83:113–118

    Article  CAS  Google Scholar 

  3. Zhang H, Yan H, Ning H, Reece MJ, Eriksson M, Shen Z, Wang P (2009) The grain size effect on the properties of Aurivillius phase Bi3.15Nd0.85Ti3O12 ferroelectric ceramics. Nanotechnology 20:385708

    Article  CAS  Google Scholar 

  4. Chang WA, Hai JL, Sun HK, Kim IW, Choi MS, Lee JS, Jin BM (2008) Structure dependence of the ferroelectric properties of Bi3.25Ln0.75Ti3O12 (Ln = La, Nd, Sm, Dy) ceramics. J Electroceram 21:847–850

    Article  CAS  Google Scholar 

  5. Yao YY, Song CH, Bao P, Su D, Lu XM, Zhu JS, Wang YN (2004) Doping effect on the dielectric property in bismuth titanate. J Appl Phys 95:3126–3130

    Article  CAS  Google Scholar 

  6. Zhang L, Chu R, Zhao S, Li G, Yin Q (2005) Microstructure and electrical properties of niobium doped Bi4Ti3O12 layer-structured piezoelectric ceramics. Mater Sci Eng, B 116:99–103

    Article  CAS  Google Scholar 

  7. Peng Z, Chen Q, Chen Y, Xiao D, Zhu J (2014) Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi4Ti3O12 piezoelectric ceramics. Mater Res Bull 59:125–130

    Article  CAS  Google Scholar 

  8. Long C, Fan H, Li M, Dong G, Li Q (2014) Crystal structure and enhanced electromechanical properties of Aurivillius ferroelectric ceramics, Bi4Ti3-x(Mg1/3Nb2/3)xO12. Scripta Mater 75:70–73

    Article  CAS  Google Scholar 

  9. Kim JS, Lee HJ, Kang SH, Lee SY, Kim IW (2004) Polarization characteristics of high valence ion doped bismuth lanthanum titanate ceramics. Integr Ferroelect 65:39–47

    Article  CAS  Google Scholar 

  10. Zhang L, Zhao S, Yu H, Zheng L, Li G, Yin Q (2004) Microstructure and electrical properties of tungsten-doped bismuth titanate ceramics. Jpn J Appl Phys 43:7613

    Article  CAS  Google Scholar 

  11. Noguchi Y, Miwa I, Goshima Y, Miyayama M (2014) Defect control for large remanent polarization in bismuth titanate ferroelectrics-doping effect of higher-valent cations. Jpn J Appl Phys 39:L1259–L1262

    Article  Google Scholar 

  12. Subbarao EC (1961) Ferroelectricity in Bi4Ti3O12 and its solid solutions. Phys Rev 122:804–807

    Article  CAS  Google Scholar 

  13. Chen M, Liu ZL, Wang Y, Wang CC, Yang XS, Yao KL (2004) Ferroelectric properties and microstructures of Nd2O3-doped Bi4Ti3O12 ceramics. Phys B 412:302–305

    Google Scholar 

  14. Shulman HS, Testorf M, Damjanovic D, Setter N (1996) Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J Am Ceram Soc 79:3124–3128

    Article  CAS  Google Scholar 

  15. Hou J, Kumar RV, Qu Y, Krsmanovic D (2009) B-site doping effect on electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics. Scripta Mater 61:664–667

    Article  CAS  Google Scholar 

  16. Hou J, Qu Y, Vaish R, Krsmanovic D, Kumar RV (2011) Effect of Sb substitution on the structural and electrical properties of Bi4Ti3−2xNbxTaxO12 ceramics. J Am Ceram Soc 94:2523–2529

    Article  CAS  Google Scholar 

  17. Chen Y, Liang D, Wang Q, Zhu J (2014) Microstructures, dielectric, and piezoelectric properties of W/Cr co-doped Bi4Ti3O12 ceramics. J Appl Phys 116:853

    Google Scholar 

  18. Chang WA, Hai JL (2006) Piezoelectric and ferroelectric properties of lead-free Bi4-xNdxTi2.97V0.03O12 ceramics. Ferroelectrics 331:129–134

    Article  CAS  Google Scholar 

  19. Nagata H, Chikushi N, Takenaka T (1999) Ferroelectric properties of bismuth layer-structured compound SrxBi4-xTi3-xTaxO12 (0 ≤ x ≤ 2). Jpn J Appl Phys 38:5497

    Article  CAS  Google Scholar 

  20. Zhang Z, Yan H, Dong X, Wang Y (2003) Preparation and electrical properties of bismuth layer-structured ceramic Bi3NBTiO9 solid solution. Mater Res Bull 38:241–248

    Article  CAS  Google Scholar 

  21. Zhen Z, Yan H, Xiang P, Dong X, Wang Y (2010) Grain orientation effects on the properties of a bismuth layer-structured ferroelectric (BLSF) Bi3NbTiO9 solid solution. J Am Ceram Soc 87:602–605

    Google Scholar 

  22. Zhou Z, Dong X, Chen H, Yan H (2006) Structural and electrical properties of W6+-doped Bi3TiNbO9 high-temperature piezoceramics. J Am Ceram Soc 89:1756–1760

    Article  CAS  Google Scholar 

  23. Gu Y, Li Y, Zheng F, Wang X (2017) Er-doped Bi3Ti(TaxNb1-x)O9 multifunctional ferroelectrics: up-conversional photoluminescence and ferroelectric properties. J Mater Sci-Mater El 28:501–506

    Article  CAS  Google Scholar 

  24. Peng Z, Yan D, Chen Q, Xin D, Liu D, Xiao D, Zhu J (2014) Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Aurivillius phase ceramics. Curr Appl Phys 14:1861–1866

    Article  Google Scholar 

  25. Suzuki M, Nagata H, Ohara J, Funakubo H, Takenaka T (2003) Bi3-xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn J Appl Phys 42:6090–6093

    Article  CAS  Google Scholar 

  26. Zeng J, Li Y, Yang Q, Yin Q (2005) Ferroelectric and piezoelectric properties of vanadium-doped CaBi 4Ti4O15 ceramics. Mater Sci Eng, B 117:241–245

    Article  CAS  Google Scholar 

  27. Yan H, Li C, Zhou J, Zhu W, He L, Song Y, Yu Y (2014) Effects of A-Site (NaCe) substitution with Na-deficiency on structures and properties of CaBi4Ti4O15-based high-Curie-temperature ceramics. Jpn J Appl Phys 40:6501

    Article  Google Scholar 

  28. Yan H, Li C, Zhou J, Zhu W, He L, Song Y (2014) A-Site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics. Jpn J Appl Phys 39:6339–6342

    Article  Google Scholar 

  29. Yan H, Li C, Zhou J, Zhu W, He L, Song Y, Yu Y (2002) Influence of sintering temperature on the properties of high TC bismuth layer structure ceramics. Mater Sci Eng, B 88:62–67

    Article  Google Scholar 

  30. Chen H, Bo S, Xu J, Zhai J (2012) Textured Ca0.85(Li, Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater Res Bull 47:2530–2534

    Article  CAS  Google Scholar 

  31. Zheng L, Li G, Zhang W, Yin Q (2002) The structure and properties of Bi-layered piezoelectric ceramics Bi4(Ca, Sr)Ti4O15. Jpn J Appl Phys 41:L1471–L1473

    Article  CAS  Google Scholar 

  32. Zeng J, Li Y, Wang D, Yin Q (2005) Electrical properties of neodymium doped CaBi4Ti4O15 ceramics. Solid State Commun 133:553–557

    Article  CAS  Google Scholar 

  33. Zhu J, Lu WP, Mao XY, Hui R, Chen XB (2003) Study on properties of lanthanum doped SrBi4Ti4O15 and Sr2Bi4Ti5O18 ferroelectric ceramics. Acta Phys Sin-Ch Ed 42:5165–5168

    CAS  Google Scholar 

  34. Mamatha B, James AR, Sarah P (2010) Dielectric and piezoelectric properties of SrBi4-xHoxTi4O15 (x = 0.00,0.02, 0.04 and 0.06) ceramics. Phys B 405:4772–4775

    Article  CAS  Google Scholar 

  35. Peng D, Zou H, Xu C, Wang X, Yao X, Lin J, Sun T (2012) Upconversion luminescence, ferroelectrics and piezoelectrics of Er doped SrBi4Ti4O15. AIP Adv 2:682

    Google Scholar 

  36. Wang W, Zhu J, Mao X, Chen X (2006) Properties of Nd-substituted SrBi4Ti4O15 ferroelectric ceramics. J Phys D Appl Phys 39:370

    Article  CAS  Google Scholar 

  37. Yokosuka M (2002) Dielectric and piezoelectric properties of Mn-modified Bi4CaTi4O15 based ceramics. Jpn J Appl Phys 41:7123–7126

    Article  CAS  Google Scholar 

  38. Zhao M, Wang C, Zhong W, Wang J, Chen H (2002) Ferroelectric, piezoelectric and pyroelectric properties of Sr1+xBi4-xTi4-xTaxO15 ceramics (x = 0-1). Jpn J Appl Phys 41:1455–1458

    Article  CAS  Google Scholar 

  39. Zhu J, Mao XY, Chen XB (2004) Properties of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics. Solid State Commun 130:363–366

    Article  CAS  Google Scholar 

  40. Khokhar A, Mahesh MLV, James AR, Goyal PK, Sreenivas K (2013) Sintering characteristics and electrical properties of BaBi4Ti4O15 ferroelectric ceramics. J Alloy Compd 581:150–159

    Article  CAS  Google Scholar 

  41. Khokhar A, Goyal PK, Thakur OP, Shukla AK, Sreenivas K (2015) Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4- xLaxTi4O15 ceramics. Mater Chem Phys 152:13–25

    Article  CAS  Google Scholar 

  42. Kumar S, Varma KBR (2009) Influence of lanthanum doping on the dielectric, ferroelectric and relax or behaviour of barium bismuth titanate ceramics. J Phys D Appl Phys 42:075405

    Article  CAS  Google Scholar 

  43. Kumar S, Kundu S, Ochoa DA, Garcia JE, Varma KBR (2012) Raman scattering, microstructural and dielectric studies on Ba1-xCaxBi4Ti4O15 ceramics. Mater Chem Phys 136:680–687

    Article  CAS  Google Scholar 

  44. Pribošič I, Makovec D, Drofenik M (2001) Electrical properties of donor- and acceptor-doped BaBi4Ti4 O15. J Eur Ceram Soc 21:1327–1331

    Article  Google Scholar 

  45. Wang CM, Wang JF (2008) Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15. J Am Ceram Soc 91:918–923

    Article  CAS  Google Scholar 

  46. Wang CM, Wang JF, Mao C, Chen X, Dong X, Gai ZG, Zhao ML (2008) Enhanced dielectric and piezoelectric properties of Aurivillius-type potassium bismuth titanate ceramics by cerium modification. J Am Ceram Soc 91:3094–3097

    Article  CAS  Google Scholar 

  47. Wang CM, Wang JF, Gai ZG, Zhao ML, Zhao L, Xu JX, Zang GZ (2008) Ferroelectric, dielectric and piezoelectric properties of potassium lanthanum bismuth titanate K0.5La0.5Bi4Ti4O15 ceramics. Mater Chem Phys 110:402–405

    Article  CAS  Google Scholar 

  48. Wang CM, Zhao L, Wang JF, Zhao ML, Gai ZG, Su WB, Zheng LM (2009) Piezoelectric and dielectric properties of cerium-modified Aurivillius type K0.5La0.5Bi4Ti4O15 ceramics. Mater Chem Phys 114:1004–1007

    Article  CAS  Google Scholar 

  49. Zhao L, Xu JX, Yin N, Wang HC, Zhang CJ, Wang JF (2008) Microstructure, dielectric, and piezoelectric properties of Ce-modified Na0.5Bi4.5Ti4O15 high temperature piezoceramics. Phys Status Solidi-RRL 2:111–113

    Article  CAS  Google Scholar 

  50. Wang CM, Wang JF, Zhang S, Shrout TR (2009) Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature. J Appl Phys 105:463

    Google Scholar 

  51. Takenaka T, Sakata K, Toda K (1985) Piezoelectric properties of bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 ceramic. Jpn J Appl Phys 24:730

    Article  CAS  Google Scholar 

  52. Wang CM, Zhao L, Wang JF, Zheng LM, Du J, Zhao ML, Wang CL (2009) Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities. Mater Sci Eng, B 163:179–183

    Article  CAS  Google Scholar 

  53. Chang WA, Kim IW, Ha MS, Seo WK, Lee JS, Yi SS (2002) Dielectric and piezoelectric properties of lead-free Na0.5Bi4.5-xLaxTi4O15 and Na0.5Bi4.5-xNdxTi4O15 ceramics. Ferroelectrics 273:261–266

    Article  Google Scholar 

  54. Wang CM, Zhao L, Wang JF, Zhang S, Shrout TR (2009) Enhanced piezoelectric properties of sodium bismuth titanate (Na0.5Bi4.5Ti4O15) ceramics with B-site cobalt modification. Phys Status Solidi-RRL 3:7–9

    Article  CAS  Google Scholar 

  55. Jiang X, Jiang X, Chen C, Tu N, Chen Y, Zhang B (2016) Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. J Am Ceram Soc 99:1332–1339

    Article  CAS  Google Scholar 

  56. Wang CM, Wang JF, Gai ZG (2007) Enhancement of dielectric and piezoelectric properties of M0.5Bi 4.5Ti4O15 (M = Na, K, Li) ceramics by Ce doping. Scripta Mater 57:789–792

    Article  CAS  Google Scholar 

  57. Zhang X, Yan H, Reece MJ (2008) Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J Am Ceram Soc 91:2928–2932

    Article  CAS  Google Scholar 

  58. Peng Z, Chen Q, Wang Y, Xin D, Xian D, Zhu J (2013) Enhancement of piezoelectric properties of (LiCePr)-multidoped CaBi2Nb2O9 high temperature ceramics. Mater Lett 107:14–16

    Article  CAS  Google Scholar 

  59. Yan H, Zhang H, Ubic R, Reece MJ, Liu J, Shen Z, Zhang Z (2005) A lead-free high-Curie-point ferroelectric ceramic, CaBi2Nb2O9. Adv Mater 36:1261–1265

    Article  CAS  Google Scholar 

  60. Wang CM, Zhang S, Wang JF, Zhao ML, Wang CL (2009) Electromechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature. Mater Chem Phys 118:21–24

    Article  CAS  Google Scholar 

  61. Chen H, Guo X, Cui Z, Zhai J (2013) Effects of A-site Sm substitution and textured structure on electric properties of CaBi2Nb2O9-based high-Curie-temperature ceramics. Int J Appl Ceram Tec 10:E151–E158

    Article  CAS  Google Scholar 

  62. Wang Y, Wu J, Peng Z, Chen Q, Xin D, Xiao D, Zhu J (2015) Piezoelectric properties and thermal stability of Ca0.92(Li, Ce)0.04Bi2Nb2-xWxO9 high-temperature ceramics. Appl Phys A 119:337–341

    Article  CAS  Google Scholar 

  63. Bao S, Peng Z, Guang W, Li C, Chen Q, Zhang W, Zhu J (2014) Effects of Mn and Pr Co-doped on microstructural and electrical properties of CaBi2Nb2O9 piezoceramics. Ferroelectrics 458:200–207

    Article  CAS  Google Scholar 

  64. Long CB, Fan HQ, Li MM (2013) High temperature Aurivillius piezoelectrics: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)0.06(Na, Bi)0.44Bi2Nb2O9 (Ln = Ce, Nd, La and Y). Dalton Trans 42:3561–3570

    Article  CAS  Google Scholar 

  65. Sun L, Chen Q, Wu D, Wu J, Tan Z, Xiao D, Zhu J (2015) Effect of (LiCe) doping in (NaBi)0.48[]0.04Bi2Nb1.97W0.03O9 high-temperature ceramics. J Alloy Compd 625:113–117

    Article  CAS  Google Scholar 

  66. Sun L, Chen Q, Wu J, Peng Z, Tan Z, Xiao D, Zhu J (2014) Dielectric and piezoelectric properties of cerium-doped (NaBi)0.49[]0.02Bi2Nb1.98Ta0.02O9-based piezoceramics. Ceram Int 40:14159–14163

    Article  CAS  Google Scholar 

  67. Chen Q, Peng ZH, Liu H, Zhu JG, Xiao DQ (2013) Effects of (Ca, Sb) on the properties of Na0.5Bi2.5Nb2O9-based bismuth layered structure ferroelectric ceramics. Ferroelectrics 455:169–175

    Article  CAS  Google Scholar 

  68. Yun W, Nguyen C, Seraji S, Forbess MJ, Limmer SJ, Chou T, Cao G (2010) Processing and properties of strontium bismuth vanadate niobate ferroelectric ceramics. J Am Ceram Soc 84:2882–2888

    Google Scholar 

  69. Ando A, Kimura M, Sakabe Y (2003) Piezoelectric properties of Ba and Ca doped SrBi2Nb2O9 based ceramic materials. Jpn J Appl Phys 42:520–525

    Article  CAS  Google Scholar 

  70. Yun W, Limmer SJ, Chou TP, Nguyen C, Cao G (2002) Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. J Mater Sci Lett 21:947–949

    Article  Google Scholar 

  71. Wu Y, Forbess MJ, Seraji S, Limmer SJ, Chou TP, Nguyen C, Cao G (2001) Doping effect in layer structured SrBi2Nb2O9 ferroelectrics. J Appl Phys 90:5296–5302

    Article  CAS  Google Scholar 

  72. Huang S, Feng C, Chen L, Wen X (2005) Dielectric properties of SrBi2-xPrxNb2O9 ceramics (x = 0, 0.04 and 0.2). Solid State Commun 133:375–379

    Article  CAS  Google Scholar 

  73. Shrivastava V, Jha AK, Mendiratta RG (2006) Structural and electrical studies in La-substituted SrBi2 Nb2O9 ferroelectric ceramics. Phys B 371:337–342

    Article  CAS  Google Scholar 

  74. Sun L, Feng C, Chen L, Huang S (2007) Dielectric relaxation in layer-structured SrBi2-xNdxNb2O9 ceramics (x = 0, 0.05, 0.2, 0.35). J Am Ceram Soc 90:322–326

    Article  CAS  Google Scholar 

  75. Sivakumar T, Itoh M (2011) Ferroelectric phase transitions in new Aurivillius oxides: Bi2+2xSr1-2xNb2-xScxO9. J Mater Chem A 21:10865–10870

    Article  CAS  Google Scholar 

  76. Fang P, Fan H, Xi Z, Chen W, Chen S, Long W, Li X (2013) Structure and electrical properties of bismuth and sodium modified SrBi2Nb2O9 ferroelectric ceramics. J Alloy Compd 550:335–338

    Article  CAS  Google Scholar 

  77. Fang P, Xi Z, Long W, Li X, Li J (2013) Structure and electrical properties of SrBi2Nb2O9-based ferroelectric ceramics with lithium and cerium modification. J Alloy Compd 575:61–64

    Article  CAS  Google Scholar 

  78. Yao Z, Chu R, Xu Z, Hao J, Wei D, Cheng R, Li G (2016) Preparation and electrical properties of MoO3-modified SrBi2Nb2O9-based lead-free piezoelectric ceramics. J Alloy Compd 666:10–14

    Article  CAS  Google Scholar 

  79. Zhou Z, Li Y, Hui S, Dong X (2014) Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics. Appl Phys Lett 104:166

    Google Scholar 

  80. Jain R, Gupta V, Mansingh A, Sreenivas K (2004) Ferroelectric and piezoelectric properties of non-stoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics prepared from sol-gel derived powders. Mater Sci Eng, B 112:54–5881

    Article  CAS  Google Scholar 

  81. Noguchi Y, Miyayama M, Kudo T (2001) Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties. Phys Rev B 63:214102

    Article  CAS  Google Scholar 

  82. Fujioka C, Aoyagi R, Takeda H, Okamura S, Shiosaki T (2005) Effect of non-stoichiometry on ferroelectricity and piezoelectricity in strontium bismuth tantalate ceramics. J Eur Ceram Soc 25:2723–2726

    Article  CAS  Google Scholar 

  83. Shuyu JJ, Lee CC (2003) Sintering and properties of molybdenum-doped SrBi2Ta2O9 ceramics. J Eur Ceram Soc 23:1167–1173

    Article  Google Scholar 

  84. Miyayama M, Noguchi Y (2005) Polarization properties and oxygen-vacancy distribution of SrBi2Ta2O9 ceramics modified by Ce and Pr. J Eur Ceram Soc 25:2477–2482

    Article  CAS  Google Scholar 

  85. Zhou Z, Cheng B, Li Y, Dong X (2007) Preparation of textured Bi3TiNbO9 ceramics. Mater Chem Phys 104:225–229

    Article  CAS  Google Scholar 

  86. Zhang Z, Yan H, Xiang P, Dong X, Wang Y (2004) Grain orientation effects on the properties of a bismuth layer-structured ferroelectric (BLSF) Bi3NbTiO9 solid solution. J Am Ceram Soc 87:602–605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Bismuth Layer Structured Ferroelectrics. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_7

Download citation

Publish with us

Policies and ethics