Skip to main content

Theoretical Formalism and Simulation Setup

  • 225 Accesses

Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter consists of two parts where we, first, discuss the essential theoretical formalism to investigate the observables we are interested in. Mainly, we provide the formulations to extract the mass and the electromagnetic form factors of spin-1/2 and spin-3/2 baryons. A brief account on data analysis is also given. Second part focuses on the technical, computaional aspects of the lattice method where we detail our setup. Information about the gauge configurations, parameter tunings, propagator inversions and statistical improvements are all given in this part.

Keywords

  • Hadron mass
  • Electromagnetic form factor
  • Spin-1/2 and spin-3/2 baryons
  • Lattice simulations
  • Parameter tuning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8995-4_4
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8995-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3

References

  1. S. Aoki, M. Fukugita, S. Hashimoto, Y. Iwasaki, K. Kanaya, Y. Kuramashi, H. Mino, M. Okawa, A. Ukawa, T. Yoshie, Analysis of hadron propagators with 1000 configurations on a \(24**3 x 64\) lattice at beta \(= 6\). Nucl. Phys. Proc. Suppl. 47, 354–357 (1996). https://doi.org/10.1016/0920-5632(96)00072-2

    ADS  CrossRef  Google Scholar 

  2. C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou, P.A. Harraud, et al., Nucleon electromagnetic form factors in twisted mass lattice QCD. Phys. Rev., D83: 0 094502 (2011a). https://doi.org/10.1103/PhysRevD.83.094502

  3. R. William, J. Schwinger, On a theory of particles with half-integral spin. Phys. Rev. 60, 61–61 (1941). https://doi.org/10.1103/PhysRev.60.61

  4. S. Nozawa, D.B. Leinweber, Electromagnetic form-factors of spin 3/2 baryons. Phys. Rev. D 42, 3567–3571 (1990). https://doi.org/10.1103/PhysRevD.42.3567

    ADS  CrossRef  Google Scholar 

  5. C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Baryon spectrum with \(N_f = 2+1+1\) twisted mass fermions. Phys. Rev. D90 0 (7): 0 074501 (2014).https://doi.org/10.1103/PhysRevD.90.074501

  6. S. Boinepalli, D.B. Leinweber, P.J. Moran, A.G. Williams, J.M. Zanotti, J.B. Zhang, Electromagnetic structure of decuplet baryons towards the chiral regime. Phys. Rev. D 80: 0 054505 (2009). https://doi.org/10.1103/PhysRevD.80.054505

  7. C. Alexandrou, T. Korzec, G. Koutsou, J.W. Negele, and Y. Proestos. The Electromagnetic form factors of the \(\Omega ^-\) in lattice QCD. Phys.Rev. D82: 0 034504, 2010. https://doi.org/10.1103/PhysRevD.82.034504

  8. L. Lyons, Statistics for nuclear and particle physicists, (Cambridge University Press, 1986). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521255406

  9. J.W. Tukey, Abstracts of papers. Ann. Math. Statistics 29 0(2): 0 614–623 (1958). ISSN 00034851. http://www.jstor.org/stable/2237363

  10. M.H. Quenouille, Approximate tests of correlation in time-series. J. R. Statistical Soc. Series B (Methodological), 11 0 (1): 0 68–84 (1949). ISSN 00359246. http://www.jstor.org/stable/2983696

  11. C. Michael, Fitting correlated data. Phys. Rev. D 49, 2616–2619 (1994). http://link.aps.org/doi/10.1103/PhysRevD.49.2616

  12. C. Michael, A. McKerrell, Fitting correlated hadron mass spectrum data. Phys. Rev. D 51, 3745–3750 (1995). https://doi.org/10.1103/PhysRevD.51.3745

  13. S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, 2+1 Flavor Lattice QCD toward the Physical Point. Phys. Rev. D79: 0 034503 (2009). https://doi.org/10.1103/PhysRevD.79.034503

  14. Aida X. El-Khadra, Andreas S. Kronfeld, Paul B. Mackenzie, Massive fermions in lattice gauge theory. Phys. Rev. D 55, 3933–3957 (1997). https://doi.org/10.1103/PhysRevD.55.3933

    ADS  CrossRef  Google Scholar 

  15. T. Burch, C. DeTar, M. Di Pierro, A.X. El-Khadra, E.D. Freeland, et al., Quarkonium mass splittings in three-flavor lattice QCD. Phys.Rev. D81: 0 034508 (2010). https://doi.org/10.1103/PhysRevD.81.034508

  16. C. Bernard, C. DeTar, M. DiPierro, A.X. El-Khadra, R.T. Evans, E.D. Freeland, E. Gamiz, S. Gottlieb, U.M. Heller, J.E. Hetrick, A.S. Kronfeld, J. Laiho, L. Levkova, P. B. Mackenzie, J.N. Simone, R. Sugar, D. Toussaint, R.S./ VandeWater, Tuning fermilab heavy quarks in 2+1 flavor lattice QCD with application to hyperfine splittings. Phys.Rev. D83: 0 034503 (2011). https://doi.org/10.1103/PhysRevD.83.034503

  17. D. Mohler, R.M. Woloshyn, \(D\) and \(D_s\) meson spectroscopy. Phys.Rev. D84: 0 054505 (2011). https://doi.org/10.1103/PhysRevD.84.054505

  18. D. Mohler, S. Prelovsek, R.M. Woloshyn, \(D \pi \) scattering and \(D\) meson resonances from lattice QCD. Phys.Rev. D87 0(3): 0 034501 (2013a). https://doi.org/10.1103/PhysRevD.87.034501

  19. D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek, R.M. Woloshyn, \(D_{s0}^*(2317)\) meson and \(D\)-meson-kaon scattering from lattice QCD. Phys. Rev. Lett. 111 0(22): 0 222001 (2013b). https://doi.org/10.1103/PhysRevLett.111.222001

  20. A. Ali Khan, S. Aoki, G. Boyd, R. Burkhalter, S. Ejiri, M. Fukugita, S. Hashimoto, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, T. Manke, K. Nagai, M. Okawa, H.P. Shanahan, A. Ukawa, T. Yoshié, Light hadron spectroscopy with two flavors of dynamical quarks on the lattice. Phys. Rev. D 65 0(5): 0 054505 (2002). https://doi.org/10.1103/hysRevD.65.054505

  21. Y. Namekawa et al., Charm quark system at the physical point of 2+1 flavor lattice QCD. Phys.Rev. D84: 0 074505 (2011). https://doi.org/10.1103/PhysRevD.84.074505

  22. C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou, P.A. Harraud, P. Guichon, K. Jansen, T. Korzec, M. Papinutto, Axial nucleon form factors from lattice QCD. Phys. Rev. D83: 0 045010 (2011b). https://doi.org/10.1103/PhysRevD.83.045010

  23. B. Bunk, K.H. Mutter, K. Schilling, Lattice gauge theory. A challenge in large scale computing, in Proceedings, NATO workshop, ed. by F.R. Wuppertal, Germany, November 5–7 (1985). NATO Sci. Ser. B 140: 0 pp. 1–334 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Utku Can .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Can, K.U. (2018). Theoretical Formalism and Simulation Setup. In: Electromagnetic Form Factors of Charmed Baryons in Lattice QCD . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8995-4_4

Download citation