Skip to main content

Lattice Formulation of QCD

  • 221 Accesses

Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we provide a detailed formulation of the lattice field theory in the context of QCD. Basic changes compared to the continuum formulation is introduced. Then, we formulate the Euclidean QCD action starting from a naive approach and improve it step-by-step until we have a suitable lattice action. We discuss the gauge and fermion sectors individually with their respective challenges and improvements. Steps of a typical application of the method are outlined in the closing of the chapter.

Keywords

  • Lattice field theory
  • Euclidean space-time
  • Discrete action
  • Fermion doubling
  • Improvement program

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8995-4_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8995-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  1. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20: 367–387 (1948). https://doi.org/10.1103/RevModPhys.20.367

  2. K. Symanzik, Schrödinger representation and casimir effect in renormalizable quantum field theory. Nuclear Physics B 190(1): 1–44 (1981). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(81)90482-X. URL http://www.sciencedirect.com/science/article/pii/055032138190482X. Volume B190 [FS3] No. 2 To Follow in Approximately Two Months

  3. M. Lüscher, Schrödinger representation in quantum field theory. Nuclear Phys. B 254(0): 52–57 (1985). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(85)90210-X. http://www.sciencedirect.com/science/article/pii/055032138590210X

  4. M. Luscher, R. Narayanan, P. Weisz, U. Wolff, The Schrodinger functional: a renormalizable probe for non-Abelian gauge theories. Nucl. Phys. B384:168–228 (1992). https://doi.org/10.1016/0550-3213(92)90466-O

  5. S. Sint, On the Schrodinger functional in QCD. Nucl. Phys. B421: 135–158 (1994). https://doi.org/10.1016/0550-3213(94)90228-3

  6. S. Sint, One loop renormalization of the QCD Schrodinger functional. Nucl. Phys. B451: 416–444 (1995). https://doi.org/10.1016/0550-3213(95)00352-S

  7. S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya, Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita, T. Yoshie, 2+1 flavor lattice QCD toward the physical point. Phys. Rev. D79: 034503 (2009). https://doi.org/10.1103/PhysRevD.79.034503

  8. S. Aoki et al., Comparative study of full QCD hadron spectrum and static quark potential with improved actions. Phys. Rev. D60: 114508 (1999). https://doi.org/10.1103/PhysRevD.60.114508

  9. Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action. II–four-dimensional non-abelian SU(N) gauge model (2011). arXiv:1111.7054

  10. M. Luscher, P. Weisz, On-shell improved lattice gauge theories. Commun. Math. Phys. 97:59 (1985). https://doi.org/10.1007/BF01206178. [Erratum: Commun. Math. Phys. 98, 433 (1985)]

  11. J.S. Bell, R. Jackiw, A PCAC puzzle: pi0 –> gamma gamma in the sigma model. Nuovo Cim. A60: 47–61 (1969). https://doi.org/10.1007/BF02823296

  12. S.L. Adler, Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177: 2426–2438 (1969). https://doi.org/10.1103/PhysRev.177.2426

  13. R. Gupta. Introduction to lattice QCD: Course, in Probing the standard model of particle interactions. Proceedings, summer school in theoretical physics, NATO Advanced Study Institute, 68th session, Les Houches, France, July 28–September 5, 1997. Pt. 1, 2, pp. 83–219 (1997). http://alice.cern.ch/format/showfull?sysnb=0284452

  14. K.G. Wilson, New phenomena in subnuclear physics: Part a, in New phenomena in subnuclear physics: part A, ed. by A. Zichichi (Springer, US, Boston, MA, 1977). ISBN 978-1-4613-4208-3. https://doi.org/10.1007/978-1-4613-4208-3_6

  15. L.H. Karsten, J. Smith, Lattice fermions: species doubling, chiral invariance and the triangle anomaly. Nuclear Phys. B 183(1): 103–140 (1981). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(81)90549-6. http://www.sciencedirect.com/science/article/pii/0550321381905496

  16. M. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and o(a) improvement in lattice QCD. Nuclear Phys. B 478(1): 365–397 (1996). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(96)00378-1. http://www.sciencedirect.com/science/article/pii/0550321396003781

  17. J.B. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D11: 395 (1975). https://doi.org/10.1103/PhysRevD.11.395

  18. Herbert Neuberger, Exactly massless quarks on the lattice. Phys. Lett. B 417, 141–144 (1998)

    ADS  MathSciNet  CrossRef  Google Scholar 

  19. D.B. Kaplan, A method for simulating chiral fermions on the lattice. Phys. Lett. B288: 342–347 (1992). https://doi.org/10.1016/0370-2693(92)91112-M

  20. G. Curci, P. Menotti, G. Paffuti, Symanzik’s improved lagrangian for lattice gauge theory. Phys. Lett. B 130(3): 205–208 (1983). ISSN 0370-2693. https://doi.org/10.1016/0370-2693(83)91043-2. http://www.sciencedirect.com/science/article/pii/0370269383910432

  21. K. Symanzik. Some topics in quantum field theory, in Mathematical Problems in Theoretical Physics: Proceedings of the VIth International Conference on Mathematical Physics Berlin (West) ed. by R. Schrader, R. Seiler, D.A. Uhlenbrock, August 11–20, 1981 (Springer, Heidelberg, 1982), pp. 47–58. ISBN 978-3-540-38982-8. https://doi.org/10.1007/3-540-11192-1_11

  22. K. Symanzik, Continuum limit and improved action in lattice theories. Nuclear Phys. B 226(1): 187–204 (1983a). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(83)90468-6. http://www.sciencedirect.com/science/article/pii/0550321383904686

  23. K. Symanzik, Continuum limit and improved action in lattice theories. Nuclear Phys. B 226(1): 205–227 (1983b). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(83)90469-8. http://www.sciencedirect.com/science/article/pii/0550321383904698

  24. P. Weisz, Continuum limit improved lattice action for pure yang-mills theory (i). Nuclear Phys. B 212 (1): 1–17 (1983). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(83)90595-3. http://www.sciencedirect.com/science/article/pii/0550321383905953

  25. P. Weisz, R. Wohlert, Continuum limit improved lattice action for pure yang-mills theory (ii). Nuclear Phys. B 236(2):397–422 (1984). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(84)90543-1. http://www.sciencedirect.com/science/article/pii/0550321384905431

  26. B. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for QCD with Wilson Fermions. Nucl. Phys. B259: 572 (1985). https://doi.org/10.1016/0550-3213(85)90002-1

  27. M. Lüscher, P. Weisz, O(a) improvement of the axial current in lattice QCD to one-loop order of perturbation theory. Nuclear Phys. B 479(1): 429–458 (1996). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(96)00448-8. http://www.sciencedirect.com/science/article/pii/0550321396004488

  28. R. Wohlert, Improved continuum limit lattice action for quarks. DESY-87-069 (1987)

    Google Scholar 

  29. S. Aoki et al. Nonperturbative O(a) improvement of the Wilson quark action with the RG-improved gauge action using the Schrodinger functional method. Phys. Rev. D73: 034501 (2006). https://doi.org/10.1103/PhysRevD.73.034501

  30. P.T. Matthews, A. Salam, The green’s functions of quantised fields. II Nuovo Cimento (1943–1954) 12(4): 563–565 (1954). ISSN 1827-6121. https://doi.org/10.1007/BF02781302

  31. P.T. Matthews, A. Salam, Propagators of quantized field. II Nuovo Cimento (1955–1965) 2(1): 120–134 (1955). ISSN 1827-6121. https://doi.org/10.1007/BF02856011

  32. C. Gattringer, C.B. Lang, Quantum chromodynamics on the lattice, Lecture Notes in Physics, vol. 788, 1 edn. (Springer, Heidelberg, 2010). https://doi.org/10.1007/978-3-642-01850-3

  33. D. Chen, N.H. Christ, C. Cristian, Z. Dong, A. Gara, K. Garg, B. Joo, C. Kim, L. Levkova, X. Liao, R.D. Mawhinney, S. Ohta, T. Wettig, Qcdoc: A 10-teraflops scale computer for lattice QCD. Nuclear Phys. B - Proc. Suppl. 94(1): 825–832 (2001). ISSN 0920-5632. https://doi.org/10.1016/S0920-5632(01)01014-3. http://www.sciencedirect.com/science/article/pii/S0920563201010143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Utku Can .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Can, K.U. (2018). Lattice Formulation of QCD. In: Electromagnetic Form Factors of Charmed Baryons in Lattice QCD . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8995-4_3

Download citation