Skip to main content

Quantum Chromodynamics

  • 226 Accesses

Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is devoted to making the reader familiar with the ideas underlying the QCD and its formalism. We briefly discuss the advent of the color quantum number, which is a unique feature and centerpiece of strong interactions. In what follows, QCD is presented formally as a quantum field theory, where we discuss its energy scale-dependent characteristics and how it is related to the formation of hadrons. Finally, by following the early experimental developments, we give a historical account of the evidence for the hadron structure and sketch the simple formalism that is commonly used to study it in a theoretical approach.

Keywords

  • Color charge
  • Quantum field theory
  • Strong coupling constant
  • Confinement
  • Hadron structure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8995-4_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8995-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3

References

  1. C. Patrignani et al., Review of particle physics. Chin. Phys. C40(10), 100001 (2016), https://doi.org/10.1088/1674-1137/40/10/100001

  2. O.W. Greenberg, Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598–602 (1964), http://link.aps.org/doi/10.1103/PhysRevLett.13.598

  3. Y. Nambu, A systematics of hadrons in subnuclear physics, in Preludes in Theoretical Physics in Honor of V. F. Weisskopf (1966), p. 133

    Google Scholar 

  4. M.Y. Han, Y. Nambu, Three-triplet model with double \({\text{SU}}(3)\) symmetry. Phys. Rev. 139, B1006–B1010 (1965), http://link.aps.org/doi/10.1103/PhysRev.139.B1006

  5. L. Montanet et al., Review of particle properties. Phys. Rev. D 50, 1173–1814 (1994), http://link.aps.org/doi/10.1103/PhysRevD.50.1173

  6. L.D. Faddeev, V.N. Popov, Feynman diagrams for the yang-mills field. Phys. Lett. B 25(1), 29–30 (1967). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/0370269367900676

  7. T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford, 1984)

    Google Scholar 

  8. S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge University Press, Cambridge, 2013). ISBN 9781139632478, 9780521670548, 9780521550024

    Google Scholar 

  9. G. Hooft, Renormalization of massless yang-mills fields. Nucl. Phys. B 33(1), 173–199 (1971a)

    ADS  CrossRef  Google Scholar 

  10. G. Hooft, Renormalizable lagrangians for massive yang-mills fields. Nucl. Phys. B 35(1), 167–188 (1971b)

    ADS  CrossRef  Google Scholar 

  11. I.J.R. Aitchison, AJG Hey, Gauge Theories in Particle Physics: A Practical Introduction, 4th edn. (CRC Press, Boca Raton, FL, 2013), https://cds.cern.ch/record/1507184

  12. J. Frenkel, J.C. Taylor, Asymptotic freedom in the axial and coulomb gauges. Nucl. Phys. B 109(3), 439–451 (1976). ISSN 0550-3213, http://www.sciencedirect.com/science/article/pii/0550321376902443

  13. I.B. Khriplovich, Green’s functions in theories with non-abelian gauge group. Sov. J. Nucl. Phys. 10, 235–242 (1969). Yad. Fiz.10,409 (1969)

    Google Scholar 

  14. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973), http://link.aps.org/doi/10.1103/PhysRevLett.30.1343

  15. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973), http://link.aps.org/doi/10.1103/PhysRevLett.30.1346

  16. M. Gell-Mann, F.E. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954), http://link.aps.org/doi/10.1103/PhysRev.95.1300

  17. C.G. Callan, Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970), http://link.aps.org/doi/10.1103/PhysRevD.2.1541

  18. K. Symanzik, Small distance behaviour in field theory and power counting. Comm. Math. Phys. 18(3), 227–246 (1970), http://projecteuclid.org/euclid.cmp/1103842537

  19. M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 710, 485–498 (2005), https://doi.org/10.1016/j.nuclphysb.2005.01.012

  20. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four loop beta function in quantum chromodynamics. Phys. Lett. B 400, 379–384 (1997), https://doi.org/10.1016/S0370-2693(97)00370-5

  21. S. Bethke, The 2009 world average of \(\alpha \) s. Eur. Phys. J. C 64(4), 689–703 (2009). ISSN 1434-6052, http://dx.doi.org/10.1140/epjc/s10052-009-1173-1

  22. G. Arnison et al., Observation of jets in high transverse energy events at the cern proton antiproton collider. Phys. Lett. B 123(1), 115–122 (1983). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/037026938390970X

  23. G. Arnison et al., Associated production of an isolated, large-transverse-momentum lepton (electron or muon), and two jets at the cern pp collider. Phys. Lett. B 147(6), 493–508 (1984). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/0370269384914102

  24. P. Bagnaia et al., Measurement of very large transverse momentum jet production at the cern pp collider. Phys. Lett. B 138(5), 430–440 (1984). ISSN 0370-2693, http://www.sciencedirect.com/science/article/pii/037026938491935X

  25. G.S. Bali, QCD forces and heavy quark bound states. Phys. Rept. 343, 1–136 (2001), https://doi.org/10.1016/S0370-1573(00)00079-X

  26. I. Estermann, O. Stern, Über die magnetische ablenkung von wasserstoffmolekülen und das magnetische moment des protons. ii. Zeitschrift für Physik 85(1), 17–24 (1933). ISSN 0044-3328, http://dx.doi.org/10.1007/BF01330774

  27. R. Frisch, O. Stern, Über die magnetische ablenkung von wasserstoffmolekülen und das magnetische moment des protons. i. Zeitschrift für Physik 85(1), 4–16 (1933). ISSN 0044-3328, http://dx.doi.org/10.1007/BF01330773

  28. R.W. McAllister, R. Hofstadter, Elastic scattering of 188-mev electrons from the proton and the alpha particle. Phys. Rev. 102, 851–856 (1956), http://link.aps.org/doi/10.1103/PhysRev.102.851

  29. E.M. Riordan, The Discovery of quarks. Science 256, 1287–1293 (1992), https://doi.org/10.1126/science.256.5061.1287

  30. J.D. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969), http://link.aps.org/doi/10.1103/PhysRev.179.1547

  31. R.P. Feynman, Photon-Hadron Interactions (WA Benjamin Inc., Reading, MA, 1972)

    Google Scholar 

  32. R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969), http://link.aps.org/doi/10.1103/PhysRevLett.23.1415

  33. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8(3), 214–215 (1964). ISSN 0031-9163, http://www.sciencedirect.com/science/article/pii/S0031916364920013

  34. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, in Developments in the quark theory of hadrons, 1964–1978, vol. 1, ed. by D.B. Lichtenberg, S.P. Rosen (Hadronic Press, Inc., Nonantum, MA, 1980), pp. 22–101, http://inspirehep.net/record/4674/files/cern-th-412.pdf

  35. J. Arrington, P.G. Blunden, W. Melnitchouk, Review of two-photon exchange in electron scattering. Prog. Part. Nucl. Phys. 66(4), 782–833 (2011). ISSN 0146-6410, http://www.sciencedirect.com/science/article/pii/S0146641011000962

  36. M.N. Rosenbluth, High energy elastic scattering of electrons on protons. Phys. Rev. 79, 615–619 (1950), http://link.aps.org/doi/10.1103/PhysRev.79.615

  37. R.G. Sachs, High-energy behavior of nucleon electromagnetic form factors. Phys. Rev. 126, 2256–2260 (1962), http://link.aps.org/doi/10.1103/PhysRev.126.2256

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Utku Can .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Can, K.U. (2018). Quantum Chromodynamics. In: Electromagnetic Form Factors of Charmed Baryons in Lattice QCD . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8995-4_2

Download citation