Design of QCA-Based D Flip Flop and Memory Cell Using Rotated Majority Gate

  • Trailokya Nath SasamalEmail author
  • Ashutosh Kumar Singh
  • Umesh Ghanekar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 670)


Quantum-dot cellular automata (QCA) are one of the promising technologies that enable nanoscale circuit design with high-performance and low-power consumption features. This work presents a rotated structure of conventional 3-input majority gate in QCA, which exhibits a symmetric structure that is suitable for a compact implementation of coplanar QCA digital circuits. To show the novelty of this structure, D flip flops and memory cell are proposed. The result shows proposed D flip flops are more superior over the existing designs. In addition, proposed memory cell is 33, 79, and 20% more effective in terms of cell counts, area, and latency, respectively, over the best design in this segment using conventional 3-input majority gate. Designs are realized and evaluated using QCADesigner 2.0.3.


Quantum-dot cellular automata (QCA) Memory cell D flip flop Majority gate Digital design 


  1. 1.
    Lent, C. S., Tougaw, P. D., Porod, W., Bernstein, G. H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993).Google Scholar
  2. 2.
    Lent, C. S., Tougaw, P. D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997).Google Scholar
  3. 3.
    Sasamal, T. N., Singh, A. K., Mohan, A.: Efficient design of reversible alu in quantum-dot cellular automata. Optik 127(15), 6172–6182 (2016).Google Scholar
  4. 4.
    Sasamal, T. N., Singh, A. K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016).Google Scholar
  5. 5.
    Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M. R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010).Google Scholar
  6. 6.
    Sasamal, T. N., Singh, A. K., Ghanekar, U.: Design of non-restoring binary array divider in majority logic-based QCA. Electronics Letters 52(24), 2001–2003 (2016).Google Scholar
  7. 7.
    Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13, 701–708 (2014).Google Scholar
  8. 8.
    Shamsabadi, A. S., Ghahfarokhi, B. S., Zamanifar, K., Vafaei, A.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst.Archit. 55, 180–187 (2009).Google Scholar
  9. 9.
    Vankamamidi, V., Ottavi, M., Lombardi, F.: A serial memory by quantum-dot cellular automata (QCA). IEEE Trans. Comput. 57, 606–618 (2008).Google Scholar
  10. 10.
    Berzon, D. Fountain, T. J.: A memory design in QCAs using the squares formalism. In Proceedings of the Great Lakes Symposium. VLSI, pp. 166–169 (1999).Google Scholar
  11. 11.
    Vetteth, A., Walus, K., Dimitrov, V. S., Jullien, G. A.: Quantum-Dot Cellular Automata of Flip-Flops. ATIPS Laboratory 2500 University Drive, N.W., Calgary, Alberta, Canada T2N 1N4, 2003.Google Scholar
  12. 12.
    Yang, X., Cai, L., Zhao, X.: Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron. Lett. 46, 825–626 (2010).Google Scholar
  13. 13.
    Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectronics Journal 43, 929–940 (2012).Google Scholar
  14. 14.
    Dehkordi, M. A., Shamsabadi, A. S., Ghahfarokhi, B. S., Vafaei, A.: Novel RAM Cell designs based on inherent capabilities of quantum dot cellular automata. Microelectronics Journal 42, 701–708 (2011).Google Scholar
  15. 15.
    Walus, K., Vetteth, A., Jullien, G. A., Dimitrov, V. S.: RAM design using quantum-dot cellular automata. In Proc. Nanotechnology Conference and Trade Show, 2, pp. 160–163 (2003).Google Scholar
  16. 16.
    Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectronics Journal 46, 43–51 (2015).Google Scholar
  17. 17.
    Walus, K., Dysart, T. J., Jullien, G. A., Budiman, R. A.: QCAdesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Trailokya Nath Sasamal
    • 1
    Email author
  • Ashutosh Kumar Singh
    • 2
  • Umesh Ghanekar
    • 1
  1. 1.Department of Electronics & CommunicationNITKurukshetraIndia
  2. 2.Department of Computer ApplicationsNITKurukshetraIndia

Personalised recommendations