Skip to main content

Mathematically Modeling the Role of Triglyceride Production on Leptin Resistance

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 752)

Abstract

Diet-induced obesity is becoming more common all over the world, which is increasing the prevalence of obesity-induced chronic diseases such as diabetes, coronary heart disease, cancer, and sleep apnea. Many experimental results show that obesity is often associated with an elevated concentration of plasma leptin and triglycerides. Triglycerides inhibit the passage of leptin across the blood–brain barrier (BBB) to signal the hypothalamus to suppress appetite. However, it is still not clear how triglyceride concentration affects leptin transport across the BBB and energy balance. In this paper, we propose a novel ordinary differential equations model describing the role of leptin in the regulation of adipose tissue mass. Analytical and numerical results are analyzed using biologically relevant parameter values. Additionally, we perform sensitivity analysis of the equilibria and study the sensitivity of triglyceride production on leptin resistance. Equilibria analysis and simulation results show that triglyceride production plays an important role in determining the fat mass in an individual. As weight increases, the occurrence of leptin resistance increases. Obesity enhances the likelihood of creating a vicious circle, where more fat mass leads to greater leptin resistance. Thus, control of the triglyceride production may be effective in reducing the occurrence of leptin resistance.

Keywords

  • Triglyceride
  • Leptin resistance
  • Sensitivity
  • Bifurcation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8944-2_35
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8944-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. WHO, http://www.who.int/mediacentre/factsheets/fs311/en/, 2016.

  2. B. Swinburn and G. Sacks and K. Hall et al., Lancet 378, 804–814, 2011.

    Google Scholar 

  3. J. Friedman, Nature 404, 632–634, 2000.

    Google Scholar 

  4. J. O. Jørgensen et al., Christiansen, Metabolism, 47, 1134–1139, 1998.

    Google Scholar 

  5. M. W. Schwartz et al., Nature Medicine 2, 589–593, 1996.

    Google Scholar 

  6. W. Banks and A. Coon and S. Robinson et al., Diabetes, 53, 1253–1260, 2004.

    Google Scholar 

  7. R. B. Harris, Annual Review of Nutrition 20, 45–75, 2000.

    Google Scholar 

  8. G. Scholz and P. Englaro and I. Thiele et al., Hormo. Metabo. Resea. 28, 718–723, 1996.

    Google Scholar 

  9. M. K. Sinha et al., J. Clin. Invest. 98, 1277, 1996.

    Google Scholar 

  10. M. Jacquiera and H. Soulac and F. Crauste, Math. Bios. 267, 10–23, 2015.

    Google Scholar 

  11. J. Krieger and H. Sitren and M. Daniels et al., Am. J. Clin. Nutr. 83, 260–274, 2006.

    Google Scholar 

  12. T. Pearson and J. Wattis and J. King et al., Bull. Math. Biol. 76, 2091–2121, 2014.

    Google Scholar 

  13. J. Tam and D. Fukumura and R. Jain, Cell Metab. 9, 52–63, 2009.

    Google Scholar 

  14. B. Song and D. Thomas, J. Math. Biol., 54, 27–43, 2007.

    Google Scholar 

  15. M. Jacquiera and H. Soulac and F. Crauste, Math. Bios. 267, 10–23, 2015.

    Google Scholar 

  16. R. Pattaranit and H. Van den Berg, J. R. Soc. Interface, 5, 1119–1135, 2008.

    Google Scholar 

  17. R. Ku-Carrillo et al., Appl. Math. Model. 40, 4908–4920, 2016.

    Google Scholar 

  18. J. Friedman and J. Halaas, Nature 359, 763–770, 1998.

    Google Scholar 

  19. G. Yang and H. Ge and A. Boucher et al., Molec. Endocrinol. 18, 1354–1362, 2004.

    Google Scholar 

  20. J. Krieger and H. Sitren and M. Daniels et al., Am. J. Clin. Nutr. 83, 260–274, 2006.

    Google Scholar 

  21. N. Timpson and P. Emmett and T. Frayling et al., Am. J. Clin. Nutr. 88, 971–978, 2008.

    Google Scholar 

  22. A. Lammert et al., Bioch Biophy. Resea. Commun. 283, 982–988, 2001.

    Google Scholar 

  23. W. A. Banks and A. J. Kastin and W. Huang et al., Peptides 17, 305–311, 1996.

    Google Scholar 

  24. S. Klein and S. W. Coppack and V. Mohamed-Ali et al., Diabetes, 45, 984–987, 1996.

    Google Scholar 

  25. J. Dobbing and J. Sands, Arch. Dis. Child. 48, 757–767, 1973.

    Google Scholar 

  26. K. L. Stanhope et al., J. Clin. Endocrinol. Metab. 96, 1596–1605, 2011.

    Google Scholar 

  27. CDC, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5751a4.htm, 2009.

  28. Y. J. Ostlund et al., J Clin. Endocrinol. Metab, 81, 3903–3913, 1996.

    Google Scholar 

  29. M. Miller and N. Stone and C. Ballantyne, Circulation, 123, 2292–2333, 2011.

    Google Scholar 

  30. L. Arriola and J. Hyman, Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, Dordrecht, 2009, pp. 195–247.

    Google Scholar 

Download references

Acknowledgements

This research was conducted in Mathematical and Theoretical Biology Institute (MTBI) at the Simon A. Levin Mathematical, Computational and Modeling Sciences Center (SAL MCMSC) at Arizona State University (ASU). It was partially supported by grants from the National Science Foundation (DMS1263374), and Zhao’s work partially supported by the Ningxia Medical University Research Project (XT2017002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojun Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Burkow, D., Song, B. (2019). Mathematically Modeling the Role of Triglyceride Production on Leptin Resistance. In: Patnaik, S., Jain, V. (eds) Recent Developments in Intelligent Computing, Communication and Devices. Advances in Intelligent Systems and Computing, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-10-8944-2_35

Download citation