Triboluminescence of Lanthanide Coordination Polymers

  • Yuichi Hirai
Part of the Springer Theses book series (Springer Theses)


Triboluminescence (TL) and photoluminescence (PL) of novel lanthanide (Ln(III)) coordination polymers [Ln(hfa)3(dpf)] n (dpf: 2,5-bis(diphenylphosphoryl)furan, Ln=Tb, Gd, Eu) are reported. The coordination polymers exhibited bright TL due to the face-to-face arrangement of substituents between single polymer chains. The observation of TL in a series of Eu(III) coordination polymers and a Gd(III) compound indicated that both hfa ligands and Ln(III) ions were excited under grinding. Significant PL/TL spectral differences in [Tb,Eu(hfa)3(dpf)] n due to distinct excitation processes upon grinding and UV irradiation were observed for the first time.


Triboluminescence Photoluminescence Coordination polymer 


  1. 1.
    D.O. Olawale, T. Dickens, W.G. Sullivan, O.I. Okoli, J.O. Sobanjo, B. Wang, J. Lumin. 131, 1407–1418 (2011)CrossRefGoogle Scholar
  2. 2.
    X.D. Wang, H.L. Zhang, R.M. Yu, L. Dong, D.F. Peng, A.H. Zhang, Y. Zhang, H. Liu, C.F. Pan, Z.L. Wang, Adv. Mater. 27, 2324–2331 (2015)CrossRefGoogle Scholar
  3. 3.
    D.O. Olawale, K. Kliewer, A. Okoye, T.J. Dickens, M.J. Uddin, O.I. Okoli, J. Lumin. 147, 235–241 (2014)CrossRefGoogle Scholar
  4. 4.
    R.S. Fontenot, W.A. Hollerman, K.N. Bhat, M.D. Aggarwal, B.G. Penn, Poly. J. 46, 111–116 (2014)CrossRefGoogle Scholar
  5. 5.
    G.P. Williams, T.J. Turner, Solid State Commun. 29, 201–203 (1979)CrossRefGoogle Scholar
  6. 6.
    J.I. Zink, Inorg. Chem. 14, 555–558 (1975)CrossRefGoogle Scholar
  7. 7.
    J.I. Zink, G.E. Hardy, J.E. Sutton, J. Phys. Chem. 80, 248–249 (1976)CrossRefGoogle Scholar
  8. 8.
    G.E. Hardy, J.C. Baldwin, J.I. Zink, W.C. Kaska, P.H. Liu, L. Dubois, J. Am. Chem. Soc. 99, 3552–3558 (1977)CrossRefGoogle Scholar
  9. 9.
    K.F. Wang, L.R. Ma, X.F. Xu, S.Z. Wen, J.B. Luo, Sci. Rep. 6, 1–9 (2016)CrossRefGoogle Scholar
  10. 10.
    A.J. Walton, Adv. Phys. 26, 887–948 (1977)CrossRefGoogle Scholar
  11. 11.
    J.C. Zhang, L.Z. Zhao, Y.Z. Long, H.D. Zhang, B. Sun, W.P. Han, X. Yan, X.S. Wang, Chem. Mater. 27, 7481–7489 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Nakayama, J. Nishida, N. Takada, H. Sato, Y. Yamashita, Chem. Mater. 24, 671–676 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Nishida, H. Ohura, Y. Kita, H. Hasegawa, T. Kawase, N. Takada, H. Sato, Y. Sei, Y. Yamashita, J. Org. Chem. 81, 433–441 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Marchetti, C. Di Nicola, R. Pettinari, I. Timokhin, C. Pettinari, J. Chem. Educ. 89, 652–655 (2012)CrossRefGoogle Scholar
  15. 15.
    C.-W. Hsu, K.T. Ly, W.-K. Lee, C.-C. Wu, L.-C. Wu, J.-J. Lee, T.-C. Lin, S.-H. Liu, P.-T. Chou, G.-H. Lee, Y. Chi, A.C.S. Appl, Mater. Inter. 8, 33888–33898 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Chen, Q. Zhang, F.-K. Zheng, Z.-F. Liu, S.-H. Wang, A.Q. Wu, G.-C. Guo, Dalton Trans. 44, 3289–3294 (2015)CrossRefGoogle Scholar
  17. 17.
    X.-F. Chen, X.-H. Zhu, Y.-H. Xu, S. Shanmuga, Sundara Raj, S. Ozturk, H.-K. Fun, J. Ma, X.-Z. You. J. Mater. Chem. 9, 2919–2922 (1999)CrossRefGoogle Scholar
  18. 18.
    J.P. Duignan, I.D.H. Oswald, I.C. Sage, L.M. Sweeting, K. Tanaka, T. Ishihara, K. Hirao, G. Bourhill, J. Lumin. 97, 115–126 (2002)CrossRefGoogle Scholar
  19. 19.
    K.A. Gschneidner Jr., J.-C.G. Bünzli, V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2005)Google Scholar
  20. 20.
    D.O. Olawale, O.O.I. Okoli, R.S. Fontenot, W.W. Hollerman, Triboluminescence: Theory, Synthesis, and Application (Switzerland, Springer Nature, 2016)CrossRefGoogle Scholar
  21. 21.
    S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
  22. 22.
    J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)CrossRefGoogle Scholar
  23. 23.
    K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  24. 24.
    S.J. Butler, D. Parker, Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Petoud, G. Muller, E.G. Moore, J. Xu, J. Sokolnicki, J.P. Riehl, U.N. Le, S.M. Cohen, K.N. Raymond, J. Am. Chem. Soc. 129, 77–83 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Petoud, S.M. Cohen, J.-C.G. Bünzli, K.N. Raymond, J. Am. Chem. Soc. 125, 13324–13325 (2003)CrossRefGoogle Scholar
  27. 27.
    L.M. Sweeting, A.L. Rheingold, J. Am. Chem. Soc. 109, 2652–2658 (1987)CrossRefGoogle Scholar
  28. 28.
    S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Inorg. Chem. 49, 9300–9311 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Hasegawa, R. Hieda, K. Miyata, T. Nakagawa, T. Kawai, Eur. J. Inorg. Chem. 4978–4984 (2011)Google Scholar
  30. 30.
    Y. Hirai, T. Nakanishi, Y. Kitagawa, K. Fushimi, T. Seki, H. Ito, Y. Hasegawa, Angew. Chem. Int. Ed. 55, 12059–12062 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Katagiri, Y. Hasegawa, Y. Wada, S. Yanagida, Chem. Lett. 33, 1438–1439 (2004)CrossRefGoogle Scholar
  33. 33.
    S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614–3626 (2008)CrossRefGoogle Scholar
  34. 34.
    K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 52, 6413–6416 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Hirai, T. Nakanishi, K. Miyata, K. Fushimi, Y. Hasegawa, Mater. Lett. 130, 91–93 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Hatanaka, Y. Hirai, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, K. Morokuma, Chem. Sci. 8, 423–429 (2017)CrossRefGoogle Scholar
  37. 37.
    I. Sage, G. Bourhill, J. Mater. Chem. 11, 231–245 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations