Advertisement

Amorphous Formability and Temperature-Sensitive Luminescence of Lanthanide Coordination Glasses

  • Yuichi Hirai
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Glass-transition properties and temperature-sensitive luminescence of lanthanide (Ln(III)) coordination compounds are demonstrated. The amorphous formability was systematically provided by introducing bent-angled phosphine oxide ligands based on thienyl, naphthyl, and phenyl cores with ethynyl groups. Glass transition points were clearly identified for all Ln(III) coordination compounds from 65 to 87 °C. The Tb(III)/Eu(III) mixed coordination glass also exhibited temperature-dependent emission profiles from green, yellow, orange, to red in the range of 100–400 K.

Keywords

Luminescence Glass transition Amorphous Energy transfer 

References

  1. 1.
    A. Mishra, P. Bauerle, Angew. Chem. Int. Ed. 51, 2020–2067 (2012)CrossRefGoogle Scholar
  2. 2.
    J.C.S. Costa, L. Santos, J. Phys. Chem. C 117, 10919–10928 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Shirota, J. Mater. Chem. 10, 1–25 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Nakano, S. Seki, H. Kageyama, Phys. Chem. Chem. Phys. 12, 7772–7774 (2010)CrossRefGoogle Scholar
  5. 5.
    A.K. Nedeltchev, H. Han, P.K. Bhowmik, Tetrahedron 66, 9319–9326 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Kido, Y. Okamoto, Chem. Rev. 102, 2357–2368 (2002)CrossRefGoogle Scholar
  7. 7.
    J.-C.G. Bünzli, Chem. Rev. 110, 27292755 (2010)CrossRefGoogle Scholar
  8. 8.
    A. de Bettencourt-Dias, Dalton Trans, 2229–2241 (2007)Google Scholar
  9. 9.
    S.J. Butler, D. Parker, Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefGoogle Scholar
  10. 10.
    O. Moudam, B.C. Rowan, M. Alamiry, P. Richardson, B.S. Richards, A.C. Jones, N. Robertson, Chem. Commun, 6649–6651 (2009)Google Scholar
  11. 11.
    G. Zucchi, V. Murugesan, D. Tondelier, D. Aldakov, T. Jeon, F. Yang, P. Thuery, M. Ephritikhine, B. Geffroy, Inorg. Chem. 50, 4851–4856 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Hirai, T. Nakanishi, Y. Kitagawa, K. Fushimi, T. Seki, H. Ito, H. Fueno, K. Tanaka, T. Satoh, Y. Hasegawa, Inorg. Chem. 54, 4364–4370 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 52, 6413–6416 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Hirai, T. Nakanishi, K. Miyata, K. Fushimi, Y. Hasegawa, Mater. Lett. 130, 91–93 (2014)CrossRefGoogle Scholar
  15. 15.
    S.M. Borisov, O.S. Wolfbeis, Anal. Chem. 78, 5094–5101 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
  17. 17.
    M.I.J. Stich, S. Nagl, O.S. Wolfbeis, U. Henne, M. Schaeferling, Adv. Funct. Mater. 18, 1399–1406 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Nakakita, M. Kurita, K. Mitsuo, S. Watanabe, Meas. Sci. Technol. 17, 359–366 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Hirai, T. Nakanishi, Y. Kitagawa, K. Fushimi, T. Seki, H. Ito, Y. Hasegawa, Angew. Chem. Int. Ed. 55, 12059–12062 (2016)CrossRefGoogle Scholar
  20. 20.
    M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Aebischer, F. Gumy, J.-C.G. Bünzli, Phys. Chem. Chem. Phys. 11, 1346–1353 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Pavithran, N.S.S. Kumar, S. Biju, M.L.P. Reddy, S.A. Junior, R.O. Freire, Inorg. Chem. 45, 2184–2192 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Hatanaka, Y. Hirai, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, K. Morokuma, Chem. Sci. 8, 423–429 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations