Luminescent Lanthanide-Mixed Coordination Polymers for Tunable Temperature-Sensitivity

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The control of energy transfer efficiency in lanthanide [Ln(III)]-mixed coordination polymers is reported. The coordination polymers [Tb,Eu(hfa)3(dpbp)] n are composed of Tb(III) ions, Eu(III) ions, hfa ligands, and bidentate phosphine oxide ligands [dpbp: 4,4′-bis(diphenylphosphoryl)biphenyl]. The emission colors were controlled by varying the mixture ratio of Tb(III) and Eu(III) ions (Tb/Eu = 1–1000). The obtained compounds were characterized by XRD, emission spectra, and emission lifetime measurements. Temperature-dependent emission color change from green, yellow, orange, to red was observed, and spectroscopic features were discussed on the basis of energy transfer efficiency in the solid state.

Keywords

Lanthanide Coordination polymer Temperature sensitivity Thermal stability 

References

  1. 1.
    R.J. Adrian, Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  2. 2.
    J.H. Bell, E.T. Schairer, L.A. Hand, R.D. Mehta, Annu. Rev. Fluid Mech. 33, 155–206 (2001)CrossRefGoogle Scholar
  3. 3.
    W.L. Barth, C.A. Burns, IEEE Trans. Visual Comput. Graphics 13, 1751–1758 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Sakaue, T. Hayashi, H. Ishikawa, Sensors 13, 7053–7064 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Edmunds, R.S. Laramee, G.N. Chen, N. Max, E. Zhang, C. Ware, Comput. Graph.-Uk 36, 974–990 (2012)Google Scholar
  6. 6.
    J.J. Lee, J.C. Dutton, A.M. Jacobi, J. Mech. Sci. Technol. 21, 1253–1262 (2007)CrossRefGoogle Scholar
  7. 7.
    L. Yang, H. Zare-Behtash, E. Erdem, K. Kontis, Exp. Therm. Fluid Sci. 40, 50–56 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
  9. 9.
    X.D. Wang, O.S. Wolfbeis, R.J. Meier, Chem. Soc. Rev. 42, 7834–7869 (2013)CrossRefGoogle Scholar
  10. 10.
    J.W. Gregory, H. Sakaue, T. Liu, J.P. Sullivan, Annu. Rev. Fluid Mech. 46, 303–330 (2014)CrossRefGoogle Scholar
  11. 11.
    U. Fey, Y. Egami, C. Klein, ICIASF 2007, 1–17 (2007)Google Scholar
  12. 12.
    S. Fang, S.R. Long, K.J. Disotell, J.W. Gregory, F.C. Semmelmayer, R.W. Guyton, AIAA J 50, 109–122 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  14. 14.
    S.V. Eliseeva, J.C.G. Bunzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
  15. 15.
    J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, J. Rare Earths 25, 257–274 (2007)CrossRefGoogle Scholar
  16. 16.
    L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Faulkner, S.J.A. Pope, J. Am. Chem. Soc. 125, 10526–10527 (2003)CrossRefGoogle Scholar
  18. 18.
    S.J. Butler, D. Parker, Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefGoogle Scholar
  19. 19.
    R.K. Mahajan, I. Kaur, R. Kaur, S. Uchida, A. Onimaru, S. Shinoda, H. Tsukube, Chem. Commun. 17, 2238–2239 (2003)CrossRefGoogle Scholar
  20. 20.
    T. Gunnlaugsson, J.P. Leonard, K. Sènèchal, A.J. Harte, J. Am. Chem. Soc. 125, 12062–12063 (2003)CrossRefGoogle Scholar
  21. 21.
    J.-F. Lemonnier, L. Guénée, C. Beuchat, T.A. Wesolowski, P. Mukherjee, D.H. Waldeck, K.A. Gogick, S. Petoud, C. Piguet, J. Am. Chem. Soc. 133, 16219–16234 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Mitsuishi, S. Kikuchi, T. Miyashita, Y. Amao, J. Mater. Chem. 13, 2875–2879 (2003)CrossRefGoogle Scholar
  24. 24.
    S.M. Borisov, O.S. Wolfbeis, Anal. Chem. 78, 5094–5101 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Katagiri, Y. Hasegawa, Y. Wada, S. Yanagida, Chem. Lett. 33, 1438–1439 (2004)CrossRefGoogle Scholar
  26. 26.
    K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 52, 6413–6416 (2013)CrossRefGoogle Scholar
  27. 27.
    J.F. Lemonnier, L. Guenee, C. Beuchat, T.A. Wesolowski, P. Mukherjee, D.H. Waldeck, K.A. Gogick, S. Petoud, C. Piguet, J. Am. Chem. Soc. 133, 16219–16234 (2011)CrossRefGoogle Scholar
  28. 28.
    A.M. Funk, P.H. Fries, P. Harvey, A.M. Kenwright, D. Parker, J. Phys. Chem. A 117, 905–917 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Cui, W. Zou, R. Song, J. Yu, W. Zhang, Y. Yang, G. Qian, Chem. Commun. 50, 719–721 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Zhao, X. Rao, J. Yu, Y. Cui, Y. Yang, G. Qian, Inorg. Chem. 54, 11193–11199 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Liu, S. Akerboom, M. de Jong, I. Mutikainen, S. Tanase, A. Meijerink, E. Bouwman, Inorg. Chem. 54, 11323–11329 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Wang, D. Zhao, Y. Cui, Y. Yang, G. Qian. J. Solid State Chem. 246, 341–345 (2017)CrossRefGoogle Scholar
  33. 33.
    C. Piguet, J.C.G. Bünzli, G. Bernardinelli, G. Hopfgartner, A.F. Williams, J. Am. Chem. Soc. 115, 8197–8206 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations