Luminescent Lanthanide-Mixed Coordination Polymers for Tunable Temperature-Sensitivity
Chapter
First Online:
Abstract
The control of energy transfer efficiency in lanthanide [Ln(III)]-mixed coordination polymers is reported. The coordination polymers [Tb,Eu(hfa)3(dpbp)] n are composed of Tb(III) ions, Eu(III) ions, hfa ligands, and bidentate phosphine oxide ligands [dpbp: 4,4′-bis(diphenylphosphoryl)biphenyl]. The emission colors were controlled by varying the mixture ratio of Tb(III) and Eu(III) ions (Tb/Eu = 1–1000). The obtained compounds were characterized by XRD, emission spectra, and emission lifetime measurements. Temperature-dependent emission color change from green, yellow, orange, to red was observed, and spectroscopic features were discussed on the basis of energy transfer efficiency in the solid state.
Keywords
Lanthanide Coordination polymer Temperature sensitivity Thermal stabilityReferences
- 1.R.J. Adrian, Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
- 2.J.H. Bell, E.T. Schairer, L.A. Hand, R.D. Mehta, Annu. Rev. Fluid Mech. 33, 155–206 (2001)CrossRefGoogle Scholar
- 3.W.L. Barth, C.A. Burns, IEEE Trans. Visual Comput. Graphics 13, 1751–1758 (2007)CrossRefGoogle Scholar
- 4.H. Sakaue, T. Hayashi, H. Ishikawa, Sensors 13, 7053–7064 (2013)CrossRefGoogle Scholar
- 5.M. Edmunds, R.S. Laramee, G.N. Chen, N. Max, E. Zhang, C. Ware, Comput. Graph.-Uk 36, 974–990 (2012)Google Scholar
- 6.J.J. Lee, J.C. Dutton, A.M. Jacobi, J. Mech. Sci. Technol. 21, 1253–1262 (2007)CrossRefGoogle Scholar
- 7.L. Yang, H. Zare-Behtash, E. Erdem, K. Kontis, Exp. Therm. Fluid Sci. 40, 50–56 (2012)CrossRefGoogle Scholar
- 8.M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
- 9.X.D. Wang, O.S. Wolfbeis, R.J. Meier, Chem. Soc. Rev. 42, 7834–7869 (2013)CrossRefGoogle Scholar
- 10.J.W. Gregory, H. Sakaue, T. Liu, J.P. Sullivan, Annu. Rev. Fluid Mech. 46, 303–330 (2014)CrossRefGoogle Scholar
- 11.U. Fey, Y. Egami, C. Klein, ICIASF 2007, 1–17 (2007)Google Scholar
- 12.S. Fang, S.R. Long, K.J. Disotell, J.W. Gregory, F.C. Semmelmayer, R.W. Guyton, AIAA J 50, 109–122 (2012)CrossRefGoogle Scholar
- 13.K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
- 14.S.V. Eliseeva, J.C.G. Bunzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
- 15.J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, J. Rare Earths 25, 257–274 (2007)CrossRefGoogle Scholar
- 16.L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)CrossRefGoogle Scholar
- 17.S. Faulkner, S.J.A. Pope, J. Am. Chem. Soc. 125, 10526–10527 (2003)CrossRefGoogle Scholar
- 18.S.J. Butler, D. Parker, Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefGoogle Scholar
- 19.R.K. Mahajan, I. Kaur, R. Kaur, S. Uchida, A. Onimaru, S. Shinoda, H. Tsukube, Chem. Commun. 17, 2238–2239 (2003)CrossRefGoogle Scholar
- 20.T. Gunnlaugsson, J.P. Leonard, K. Sènèchal, A.J. Harte, J. Am. Chem. Soc. 125, 12062–12063 (2003)CrossRefGoogle Scholar
- 21.J.-F. Lemonnier, L. Guénée, C. Beuchat, T.A. Wesolowski, P. Mukherjee, D.H. Waldeck, K.A. Gogick, S. Petoud, C. Piguet, J. Am. Chem. Soc. 133, 16219–16234 (2011)CrossRefGoogle Scholar
- 22.K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
- 23.M. Mitsuishi, S. Kikuchi, T. Miyashita, Y. Amao, J. Mater. Chem. 13, 2875–2879 (2003)CrossRefGoogle Scholar
- 24.S.M. Borisov, O.S. Wolfbeis, Anal. Chem. 78, 5094–5101 (2006)CrossRefGoogle Scholar
- 25.S. Katagiri, Y. Hasegawa, Y. Wada, S. Yanagida, Chem. Lett. 33, 1438–1439 (2004)CrossRefGoogle Scholar
- 26.K. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 52, 6413–6416 (2013)CrossRefGoogle Scholar
- 27.J.F. Lemonnier, L. Guenee, C. Beuchat, T.A. Wesolowski, P. Mukherjee, D.H. Waldeck, K.A. Gogick, S. Petoud, C. Piguet, J. Am. Chem. Soc. 133, 16219–16234 (2011)CrossRefGoogle Scholar
- 28.A.M. Funk, P.H. Fries, P. Harvey, A.M. Kenwright, D. Parker, J. Phys. Chem. A 117, 905–917 (2013)CrossRefGoogle Scholar
- 29.Y. Cui, W. Zou, R. Song, J. Yu, W. Zhang, Y. Yang, G. Qian, Chem. Commun. 50, 719–721 (2014)CrossRefGoogle Scholar
- 30.D. Zhao, X. Rao, J. Yu, Y. Cui, Y. Yang, G. Qian, Inorg. Chem. 54, 11193–11199 (2015)CrossRefGoogle Scholar
- 31.X. Liu, S. Akerboom, M. de Jong, I. Mutikainen, S. Tanase, A. Meijerink, E. Bouwman, Inorg. Chem. 54, 11323–11329 (2015)CrossRefGoogle Scholar
- 32.H. Wang, D. Zhao, Y. Cui, Y. Yang, G. Qian. J. Solid State Chem. 246, 341–345 (2017)CrossRefGoogle Scholar
- 33.C. Piguet, J.C.G. Bünzli, G. Bernardinelli, G. Hopfgartner, A.F. Williams, J. Am. Chem. Soc. 115, 8197–8206 (1993)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2018